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Abstract— Blind source separation(BSS)hasbeenproposed
asa method to analyze multi-channel electroencephalograply
(EEG) data. A basicissuein applying BSS algorithms is the
validity of the independenceassumption. In this paper we
investigatewhether EEG canbe consideredto be a linear com-
bination of independentsources.Linear BSS can be obtained
under the assumptions of non-Gaussian, non-stationary, or
non-white independent sources. If the linear independence
hypothesisis violated thesethr ee differ ent conditions will not
necessarilylead to the sameresult. We show, using 64 channel
EEG data, that different algorithms which incorporate the
thr ee different assumptions lead to the same results, thus
supporting the linear independencehypothesis.
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|. INTRODUCTION

Problematicin electroencephalograph{EEG) analysis
is the non-invertibility of the imaging problem, i.e. a
small number of sensorsmeasuresa linear combination
of a multitude of neuronal and non-neuronalsources.
Methodswhich attemptto invert the sensorreadingsand
recover the underlying sourceswill be strongly affected
by the regularizationassumptionghat are imposed.This
is a well known problem of source reconstructionand
localization in EEG. Recently alternatve methodshave
been proposedthat circumvent the notion of localization
and sourcereconstructionaltogetherand simply look for
projectionsof the EEG datawith “interesting” properties,
suchasindependencl], [2], or maximumdiscriminability
betweenexperimentalconditions[3].

For example, blind sourcesseparation(BSS) has been
proposedas a method to find statistically independent
linear projectionsof the measuredEEG signals. Statistical
independencds inherently difficult to assess,typically
requiring additional assumptionson the statistics of the
sourcesTherefore variousBSSalgorithmshave beenused
to extractindependenprojections.For instance Junget al.
[1] assumethat the histogramof a sourcehaslong tails
(sparsity),and Tanget al. [2] assuméhatthe sourceshave
a coloredspectrum.Yet otheralgorithmsare available that
assumenon-stationarysourceg4] or non-Gaussiasources
[5]. If thelinear mixture assumptioris correct,alongwith
the correspondingstatisticalproperties thenall algorithms
should in principle give the sameresult. If ary of the

IHere, the term “source” should not be taken literally in the senseof
alocalizedneuronalsourceof electricalactvity thatis obsered asskull
surfacepotentialdifferencesThe term “source”is simply usedbecausét
is commonterminologyin the context of blind sourceseparationit should
be interpretedas“component”or projection.Indeed,thereis nothingthat
preventstheseBSS methodsfrom extracting projectionsof the datathat
correspondo extendedor disjoint cortical areas

conditionsis violated, e.g. sparsity or non-stationarity it
is not clearthat the algorithmswill give the sameresults.
If, furthermore the assumptiorof linearity or independence
is not metit is not clearthat any of the methodswill give
even a meaningfulresult, let alonethe sameresult.

In this paperwe investigatethe hypothesisthat EEG
can be thought of as linear combinationof independent
sourcesWe apply three different methodswhich assume
thatthe sourcesare either non-stationarynon-Gaussianpr
non-white.We find thatin fact all methodsgive the same
resultsin supportof the linear independencénypothesis.
Note thatthis doesnot constitutea formal proof. However,
we point out that in other domainssuch as independent
component®f imagesthe differentalgorithmsdo not give
the sameprojectionsof the data[4].

In the following we review the conditions for source
separatiorthatcanbe derivedfor non-white,non-stationary
andnon-Gaussiasourced6]. Theseassumptionsppeato
bewell metby EEGdata:(1) In the courseof anexperiment
differentareasin the brain becomeactive andthe resulting
EEG actiity changesvertime (non-stationary)(2) There
exists oscillatory activity in different bands as well as
slow changesobsened through trial averagingin event
relatedpotentials. Thesehave long beenconsideredlistinct
“components”of the EEG spectrum(non-white). (3) The
changesin magnitude over time tend to result in non-
Gaussiarstatistics[4].

For thesethreeconditionsthe solutionfor the separation
problem is given by the simultaneouslydiagonalization
the covariancematrix of the obsenations and additional
cross-statisticavhose form dependsupon the particular
assumptions.

Il. BLIND SOURCE SEPARATION BASED ON
INDEPENDENCE

The problem of recovering sourcesfrom their linear
mixtureswithoutknowledgeof the mixing processasbeen
widely studied.In its simplestform it can be expressed
as the problem of identifying the factorizationof the N-
dimensionabbsenationsx(t) into amixing channelA and
M -dimensionalsourcess(t),

x(t) = As(t). 1)

In encephalographthe unknovn matrix A representghe
couplingof a sourcewith eachsensorSensormgeometryas
well asthetissuepropertieswill affectits valueg. Theterm

2In EEGtherelevant propertyis impedancef thetissueandthe precise
anatomy;in magneto-encephalograpfiylEG) magneticpermeabilityand
sensollocationandorientation;in functionalnearinfraredimaging(fNIR)
absorptionand reflectioncoeficients of the tissue.



blind source separation is frequentlyusedto indicate that
no preciseknowledgeis availableonthechannelA, northe
sourcess(t). Instead,only generalstatisticalassumptions
on the sourcesor the structureof the channelare made.A
large body of work exists for the casethat one canassume
statisticallyindependensourcesTheresultingfactorization
is known as IndependentComponentAnalysis (ICA) [7].
ICA makesno assumptionsn the temporalstructureof the
sourcesln this work we also considerassumption®n the
statisticalstructureof neighboringsamplesn which cases
separatioris obtainedalsofor decorrelatedsources.

We begin by noting that the matrix A explains various
cross-statisticef the obsenationsx(¢) asan expansionof
the correspondingdiagonal cross-statisticof the sources
s(t). An obvious exampleis the time averagedcovariance
matrix, Rx = 3, E[x(t)x" (t)],2

Rx = ARSAH ) (2)

whereRy is diagonalif we assumeandependenbr decor
related sources. A denotesthe complex transposeof
A. In the following section we highlight that for non-
Gaussiannon-stationaryor non-whitesourceghereexists,
in addition to the covariancematrix, other cross-statistics
Qs which have the samediagonalizatiorproperty namely

Q. = AQ.A". ®)

Note that thesetwo conditionsalone are already suffi-
cientfor sourceseparationTo recover the sourcedrom the
obsenation x(t) we mustfind an inversematrix W such
that WH A = 1. In this casewe have,

s(t) = WHAs(t) = WHx(t). (4)

After multiplying equationg2) and(3) with W andequa-
tion (3) with Qs ' we can combinethemto obtain,

whereby assumptionA = RsQs !, is a diagonalmatrix.
This represents generalizecigervalueequationthat fully

determinesthe unmixing matrix W, This of course
assumesnonzero diagonal values for Qs. Equation (5)

specifiesN columnvectorscorrespondindo at mostM =

N sourceslf A isof rank M < N only thefirst M eigen-
vectorswill represengenuinesourceswhile the remaining
N — M eigervectorsspanthe subspaceorthogonalto A.

This formulationcombinesthereforesubspacanalysisand
separatiorin one step.

Incidentally notethatif we chooseQy = I, andassume
insteadan orthogonalmixing, in fact orthonormalif we
set Qs = I, the generalizedeigervalue equationreduces
to a corventional eigervalue equation.The solutions are
referredto asthe Principal Component®f the obsenations
X.

In general,however, the mixing A andthe solution for
‘W arenot orthogonalln thefollowing sectionwe describe

3TheexponentH standfor the hermitiantransposeWe usethis notation
to allow comple pair valuesas measuredn MEG.

several common statisticalassumptionausedin BSS and
shav how they lead to different diagonal cross-statistics

Q.
1. STATISTICAL ASSUMPTIONS AND THE FORM OF Q

The independencassumptiorgives a setof conditions
on the statisticsof recoveredsourcesAll cross-moments
of independenvariablesfactor i.e.

Elsi(t)sj(t+7)] = E[s{ ()| E[s]°(t +7)], i #j, (6)

where E[ .] representshe mathematicabxpectation.With
(4) theseequationsdefine for eachchoice of {u,v,n, 7}
a set of conditions on the coeficients of W and the
obsenable statistics of x(¢). With a sufficient number
of such conditions the unknovn parametersof W can
be identified* Dependingon the choice this implies that
in addition to independencéhe sourcesare assumedto
be either non-stationary, non-white, or non-Gaussian as
discussedn the next threesections.

A. Non-stationary Sources

First, considersecondorder statistics,u + v = 2, and
non-stationarysourcesThe covarianceof the obsenations
varieswith thetime ¢,

Rx(t) = E[x(t)x" (t)] @
= AE[s(t)s™ (t)]A" = ARL(t) A" .

Withoutrestrictionwe assumeeromeansignals.For ze-
ro meansignalsequation(6) impliesthatRs(t) is diagonal.
Therefore,A is a transformatiorthat expandsthe diagonal
covarianceof the sourcesnto the obsenedcovarianceatall
times.In particular the sumovertime leadsto equationg?2)
regardlessof stationaritypropertiesof the signals.Setting,
Q. = Rx(2), for ary timet, or linearcombinatiorof times,
will give the diagonalcross-statistic§3) requiredfor the
generalizeceigervalue equation(5).

More generally equation (7) specifiesfor eacht¢ a
setof N(N —1)/2 conditionson the NM unknowns in
the matrix A. The unmixing matrix can be identified by
simultaneouslydiagonalizingmultiple covariancematrices
estimatedover different stationarity times. In the square
case,N = M, when using the generalizedeigervalue
formulation,the N? parametergrecritically determinedy
the N2 conditionsin (5). To avoid the resultingsensitvity
to estimationerrorsin the covarianceR«(t) it is beneficial
to simultaneouslydiagonalizemorethantwo matrices.This
is discussedn detail in [8].

B. Non-White Sources

For non-whitesourcegnon-zercautocorrelationpnecan
usesecondorderstatisticsin the form of cross-correlations
for differenttime lags7:

R (1) = E[x(t)x (t + 7)]
= AE[s(t)s" (t + 7)]AT = AR ()AT .

(8)

4Note hawever in (4) that ary scalingand permutationthat is applied
to the coordinateof s canbe compensatedly applyingthe inversescales
and permutationsto the rows of W. Conditions(6) do not resole that
ambiguity



Herewe assumehat the signalsare stationarysuchthat
the estimationis independentof ¢, or equialently, that
the expectationE[.] includesa time average.Again, (6)
implies that Rs(7) is diagonalwith the auto-correlation
coeficients for lag = on its diagonal. Equation (8) has
the same structure as (3) giving us for ary choice of
T, or linear combinationsthereof, the required diagonal
cross-statisticsQx = Ry (7), to obtain the generalized
eigervalue solution. The identification of mixing channels
using eigervalue equationswas first proposedfor simulta-
neousdiagonalizatiorof cross-correlationf9]. Timelagsr
provide new informationif the sourcesignalshave distinct
auto-correlations Simultaneousdiagonalizationfor more
than two lags hasbeenpreviously presentedfor example
in [10].

C. Non-Gaussian Sources

For stationaryandwhite sourcedifferentt and+ do not
provide ary new information. In that case(6) reduceso,

i 9)

To obtain sufficient conditionsone must include more
than secondorder statisticsof the data (u + m > 2).
Considerfor example 4th order cumulantsexpressedin
termsof 4th ordermoments:

Elsi'sj] = E[s{]E[s;"],

Cum(si, 53, sx, 5f) = Elsissysi] — Elsis1Elssi]
—E[sisk|E[s}s;] — E[sis;|E[s}sk] -
(10)

For Gaussiandistributions all 4th order cumulants(10)
vanish [11]. In the following we assumenon-zerodiag-
onal terms and require therefore non-Gaussiansources.
It is straightforvard to shav using (9) that for inde-
pendentvariablesthe off-diagonal terms vanish, i # j:
Cum(si, s}, sk,s;) = 0, for ary k,1, i.e. the 4th order
cumulantsare diagonalin 4,5 for given k,I. Any linear
combination of these diagonal terms is also diagonal.
Following the discussionin [5] we define such a linear
combinationwith coeficients, M = {my;},

¢ij(M) = Z Cum(si, 85, 8k, 87 )Mk -
kL

(11)

With equation(10) and covariance Rs = E[ssf], onecan
write in matrix notation:

C.(M) = E[s”"Msss] — R.Trace (MRy)
—E[ss"IMTE[s*s"] - R.MRs.

(12)

We have addedthe index s to differentiatefrom an equi-
alentdefinition for the obsenationsx. Usingthe identity T
this reads:

C,(I) = ExTxxxH] — R Trace (Ryx)

13
—E[xxT|E[x*x] - RyRx. 13)

By inserting(1) into (13) it is easyto seethat,
C,(I) = AC,(ATA)AH, (14)

Since Cs(M) is diagonalfor ary M, it is also diagonal
for M = A®A. We find thereforethat A expandsthe
diagonal fourth order statistic to give the corresponding
obsenablefourth orderstatisticQx (I). This againgivesus
therequireddiagonalcross-statistic§3) for the generalized
eigervalue decomposition.This methodis instructve but
very sensitve to estimationerrorsandthe spreadf kurtosis
of the individual sources.For robust estimationsimulta-
neousdiagonalizationusing multiple Ms is recommended

[5].
IV. RESULTS

Results for real mixtures of EEG signals are shovn
in figure 1. This datawas collected as part of an error
related negativity (ERN) experiment(for details see[3]).
To obtain robust estimatesof the source directions we
simultaneouslyliagonalizedive or morecross-statisticfor
a given conditionsusing the diagonalizationalgorithm by
Cardosoand Souloumiac[12]. A seggmentof 0.8 seconds
of datataken from approximately200 trials was usedasa
window before and after a visual stimuluswas presented.
We recover only the 8 strongestcomponentsby setting
M 8. The result is shavn in figure 1. First note
that for eachof the three different statisticalassumptions
nearly identical sourcesare recovered, as evidenced by
the similarity in the scalpplots (columnsin A) and trial
averagedime courseof s(t). This s true for the datafrom
7 differentsubjects.

The spatial distribution and time course of the first
componentindicate a motor actvity and somatosensory
responseThis is distributed over the motor cortex bilat-
erally, assubjectsrespondin this experimentwith left and
right handbutton press It is strongestat about300-400ms
after stimulusonset,which correspondso the approximate
responsdime of this subject.The secondcomponent(oc-
cipital) representshe responseo the visual stimulus.The
fourth componenthasa fronto-centralactivity distribution
indicative of the hypothesizedorigin of the ERN in the
anteriorcingulate[13]. The remainingcomponentsemain
openfor interpretation.

V. CONCLUSION

In this paper we investigatedwhether EEG can be
seenas a linear combinationof independentomponents.
If this assumptionis not valid the different algorithms
presentedor extracting independentomponentswill not
give the sameresults.The EEG componentsve obtainare
consistenwith thelinearindependencéypothesisandthe
correspondin@assumptionshat thesecomponentgre non-
stationary non-white,andnon-Gaussianr his suggestshat
BSSis an appropriatemethodfor analysisof EEG data.
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Blind Source Separation on EEG using multiple diagonalization

Fig. 1.
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EEG sensomrojectionsusing the differentassumption®f non-white (NW), non-stationary(NS) and non-GaussiarfNG) sources.Top three

rows shawv the coupling coeficients (i-th columnin A). The bottom three rows shav the stimulus locked trail average(solid line) and standard
deviation (shadedarea)for the recorered components(t). Dotted line indicatesvisual stimulusonset.
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