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Abstract. According to Barlow (1989), feature extraction can be understood as finding a

statistically independent representation of the probability distribution underlying the

measured signals. The search for a statistically independent representation can be

formulated by the criterion of minimal mutual information, which reduces to decorrelation

in the case of Gaussian distributions. If non-Gaussian distributions are to be considered,

minimal mutual information is the appropriate generalization of decorrelation as used in

linear Principal Component Analyses (PCA). We also generalize to nonlinear

transformations by only demanding perfect transmission of information. This leads to a

general class of nonlinear transformations, namely symplectic maps. Conservation of

information allows us to consider only the statistics of single coordinate. The resulting

factorial representation of the joint probability distribution gives a density estimation. We

apply this concept to the real world problem of electrical motor fault detection treated as a

novelty detection task.
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1  Information Preserving Nonlinear Maps

Unless one has a priori knowledge about the environment, i.e. the distribution of the input

signals, it can be difficult to find criteria for separating noise from useful information. To

extract structure from the signals, one applies statistical decorrelating transformations to

the input variables. In order to avoid a loss of information, these transformations have to

preserve entropy. According to Shannon (1948) entropy is defined as

 of a continuous distribution , with . Continu-

ous entropy is sensitive to scaling. Scaling coordinates changes the amount of information

(or entropy) of a distribution. More general, for an arbitrary mapping on :

condition  yields  (Papoulis 1991), i.e. local conserva-

tion of volume guarantees constant entropy from the input  to the output . To avoid

spurious information generated by a transformation, we consider therefore volume-con-

serving maps, i.e. those with unit Jacoby determinant.

The goal of this paper is to present a special neural-network like structure for building vol-

ume preserving transformations. Two approaches may be used to achieve this goal. First,

one may prestructure the neural network in such a way that volume preservation is guaran-

teed independent of the network weights (Deco and Brauer, 1995; Deco and Schürmann,

1995). Alternatively, weight constraints may be used to restrict the learning algorithms to

volume conserving network solutions.

In this paper we present a new prestructuring technique which is based on symplectic

geometry in even-dimensional spaces ( ). The core of symplectic geometry is the

idea that certain “area elements” are the analogue of “length” in standard Euclidean geom-

etry (Siegel, 1943). Transformations which preserve these area elements are referred to as

symplectic. Symplectic transforms do also preserve volume. However, the converse is not

true, i.e. volume preservation is not sufficient for symplecticity.
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The advantage of symplectic transforms is the fact that they can be parametrized by arbi-

trary scalar functions ;  due to the implicit representation1

; (1.1)

where the  denotes the -dimensional identity matrix, and . Any non-reflect-

ing symplectic transform ( ) can be generated by an appropriate function

, and also the converse is true: Any twice differentiable scalar function, e.g. an arbitrary

standard neural network, leads to a symplectic transform in (1.1).

Consequently, to obtain a set of symplectic transforms that is as general as possible, we

use a one-hidden-layer neural network  as a general function approximator (Hornik et.

al., 1989) for the generating function :

, (1.2)

where  denotes the input-hidden weight matrix,  the hidden-output weights and  the

activation function. Eq. (1.1) has to be solved numerically. We use either fixed-point itera-

tion or a homotopy-continuation method (Stoer and Bulirsch 1993).

2  Mutual Information and Statistical Independence

The components of a multidimensional random variable  are said to be statistical

independent if the joint probability distribution  factorizes, i.e.

. Here,  represents the distribution of the individual coordi-

nates  of the random variable . Statistical independence can be measured

in terms of the mutual information ,

1.  This representation of symplectic maps is a special case of the generating function theory developed in
full generality by Feng Kang, Qing Meng-zhao (1987). A proof of the representation (1.1) and a discussion
of its role for Hamiltonian Systems can be found in Abraham and Marsden (1978) and Miesbach (1992).
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, (2.1)

Zero mutual information indicates statistical independence. Here,

 denotes the single coordinate entropies.

In the case of Gaussian distributions, linear decorrelation, i.e. diagonalizing the correla-

tion matrix of the output , has been proven to be equivalent to minimizing the mutual

information (Papoulis 1991) and corresponds to the standard Principal Component Analy-

sis (PCA) method. However, for general distributions, decorrelation does not imply statis-

tical independence of the coordinates.

Starting from the principle of minimum mutual information, Deco and Brauer (1994) for-

mulated criteria for decorrelation by means of higher orders cumulants. A similar

approach, that considers the distance to the Gaussian distribution (standardized mutual

information) but restricts itself to linear transformations, was studied by Comon (1994).

Redlich (1993) suggested the use of reversible cell automata in the context of nonlinear

statistical independence. Instead of preserving information the invertibility of the map was

considered. While invertibility indeed assures constant information when dealing with dis-

crete variables, for continuous variables, conservation of volume is necessary.

In the case of binary outputs, maximum mutual information has been proposed instead

(Schmidthuber, 1992, Deco and Parra, 1994). In the context of the blind separation prob-

lem, Bell and Sejnowski (1994) proposed a technique for the separation of continuous out-

put coordinates with a single layer perceptron. But the authors admit, that the information

maximization criterion they use, does not necessarily lead to a statistical independent rep-

resentation. In parallel Nadal and Parga (1994) based this idea on a more rigorous discus-

sion.
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In this paper, we make use of the more general principle of minimal mutual information

(statistical independence) instead of the decorrelation used in PCA.

For the symplectic map, the identity  holds, and therefore we are left with

the task of minimizing the sum of the single coordinate entropies (second term in the left-

hand side of (2.1)). Since we are given only a set of data points, drawn according to the

output distributions, this is still a difficult task. But fortunately, there is a feasible upper

bound for these entropies (Parra et.al., 1995),

(2.2)

where . Using only the second order moments for estimating the

mutual information might be seen as a strong simplification. At the expense of computa-

tional efficiency, higher order cumulants may be included to increase accuracy. An inter-

esting property of eq. (2.2) is that, if the transformation  is flexible enough, this

cost function will produce Gaussian distributions at the output. Using a variational

approach it can be shown that under the constraint of constant entropy a circular Gaussian

distribution minimizes the sum of variances in (2.2) (Parra et.al., 1995). This will be use-

ful for the density estimation addressed next. We will observe there some limitations of

the continuous volume concerving map in transforming arbitrary distributions into Gauss-

ians.

The training of the network (1.2) can be performed with standard gradient descent tech-

niques. The gradient of the output coordinates with respect to the parameters of the map

can be calculated by implicitly differentiating equation (1.1). This leads to a system of lin-

ear equations for the gradient. The overall computational complexity of the optimization
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algorithm is then  for each data point. This restricts this approach to a low dimen-

sional space (in practice ).

3  Density estimation and novelty detection

If one knows that a joint distribution factorizes, then the problem of finding an estimation

of the joint probability  in an -dimensional space is reduced to the task of finding

the one-dimensional probability distributions . As stated before, the Gaussian upper

bound cost function favors Gaussian distributions at the output, provided that the sym-

plectic map is general enough to transform the given distribution. Figure 1 demonstrates

this ability.

If the training succeeds, we might estimate the distributions by the straightforward

assumption of independent Gaussian distributions at the output:

(3.1)

Estimation reduces then to the measurement of the output variances .

FIGURE 1. Nonlinear correlated and non Gaussian joint input distribution (left) is transformed

into almost independent normal distributions (right). The input distribution was generated by

mapping a one dimensional exponential distribution with additive Gaussian noise onto a circle.
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The cost function was reduced by 68% in 300 training steps. The “network” contained 6

parameters (  and ).

We now address the closely related task of novelty detection. Given a set of samples corre-

sponding to a prior distribution, one has to decide whether or not a new sample corre-

sponds to this distribution. Putting it into other words the question is: “How probable is an

observed new sample according to what we have seen so far?” Given a certain decision

threshold, novelty detection is based on the corresponding contour of the density of the

data points previously seen. If the contour is required for an arbitrary threshold, we need

the complete estimation of the density. As a solution to this problem we propose the pre-

sented symplectic factorization with the a posterior Gaussian density estimation (3.1). The

decision surface for the novelty detection is then just a hypersphere in the output of the

symplectic map after reducing the mutual information according to the given sample set.

Figure 2 demonstrates this idea. The symplectic map was trained to reduce mutual infor-

mation on the samples ‘+’. The samples ‘o’ are to be discriminated. The procedure trans-

forms the output distribution to a Gaussian distribution as closely as possible, in order to

use a circular contour of the density as a decision boundary. As a side effect, volume con-

servancy tends to separate regions not belonging to the training set from those correspond-

ing to it. The former regions are mapped far away from the gap area. Obviously, taking a

circular decision measure at the output distribution will give a fair solution. We show the

performance of the proposed technique in figure 3 (left) by showing the standard graph of

misclassification and false-alarm rates. For this illustrative example we could also obtain

good results with a simple Gaussian mixture (Duda & Hart 1973) of two Gaussian spots.

w R
2∈ W R

2
R
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This example also demonstrates one of the possible limitations of the technique as a gen-

eral density estimation procedure. Perfect transformation into a single Gaussian spot

requires a singularity in order to map the two spots arbitrary close together. Because of the

property of local conservation of volume, vanishing distance in one direction implies

unbounded stretching in the orthogonal direction, which will not be possible with a con-

tinuous map. More generally speaking, the combination of a continuous and volume con-

serving map together with a unimodal distribution is best suited for distributions spread

over connected regions rather than for disjoint distributions. For the novelty detection this

behavior is clearly an advantage since it separates known distributions from unknown

regions.

FIGURE 2. ‘+’ training samples. ‘o’ test samples. Left: Input signals; Center: Output signals of the

trained symplectic map. The symplectic map partially transforms a bimodal training distribution

into a unimodal distribution. The map used again 6 parameters. Ellipses indicate possible

classification boundaries for the ‘+’ samples. Right: Rate of misclassification and false-alarm. We

used in both cases (input and output) an elliptical distance measure as decision criteria for novelty,

i.e. we classify as “normal” all points laying within an elliptical area around the center of the

“normal” training set. All others are classified as “novel”. The decreasing curves gives the false-

alarm rate, while the increasing curves denote the rate of missing the “novel” data points.

4  Motor fault detection

In this section, we show that the proposed concept of novelty detection provides encour-

aging results in a high dimensional real world problem. In motor fault detection, the task
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consists of noting early irregularities in electrical motors by monitoring the electrical cur-

rent. The spectrum of the current is used as a feature vector. The motor failure detector is

trained with data supplied by a healthy motor and should notify, if the motor is going to

fail.

Typically, one deals here with at least 100 and up to 1000 dimensions. Applying the out-

lined procedure to the complete feature vector is not manageable because of the high com-

putational costs of our training procedure. On the other hand, it is hard to believe that 100

or more coordinates are altogether nonlinearly correlated. More likely, we expect most of

the coordinates to be (if at all) only linearly correlated. Therefore, we first transform the

spectrum with a linear PCA. We use 230 coordinates in the spectrum between 20Hz and

130Hz.

We observed that a few of the first principal components are nonlinearly correlated. No

pairwise nonlinear structure could be observed between coordinates others than the first

10 or 15 first principal components. We assume that all other principal components are

uncorrelated, unimodal, and symmetrically distributed. They can be fairly well approxi-

mated by a normal distribution (see figure 4). We know that for normal distributions, lin-

ear decorrelation is the best that can be done in order to minimize mutual information.

Therefore, we can assume that these lower principal components are statistical indepen-

dent. We apply the symplectic factorization only to the first few components. Figure 4

shows how two of the first 10 principal components have been transformed by a 10-20-10

symplectic map trained with 800 samples ( ). The net reduced

variance by 65% in 650 training steps.
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FIGURE 3. Left: Distribution of the 2 first principal components demonstrates a clear nonlinear

dependency. Center: resulting distribution of the same first 2 components after reducing the

redundancy in the first 10 components. Right: For any other component higher than the 15th no

pairwise dependency could be observed. Here, we arbitrarily plot components 50 and 100.

Now we use this result to classify “good” vs. “bad” motors, according to (3.1). Since the

performance may vary for different types of faults, we plot the performance curve for the

three failure modes occurring in our test data (unbalanced, bearing race hole, and broken

rotor bar). In figure 5 we compare the performance with a maximum measure

( ) on the complete 230-dimensional principal component space (left), but

use only the Gaussian estimates of the 10 nonlinear transformed coordinates (center). Fur-

thermore, we analyze to what extent a given coordinate separates the ‘good motor’ and

‘bad motor’ distributions by measuring the ratio of the corresponding variances. This

analysis reveals that by including the low variance linear normalized PCA coordinates the

classification measure can be improved further. With ‘normalized’ we express the fact that

we normalize the variance before performing PCA. Best results were obtained by includ-

ing between 5 and 20 low variance PCA coordinates (see figure 4, right).
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FIGURE 4. left: maximum measure on the 230-dim. principal component space. Center: circular

distance measure on the 10 symplectic mapped first linear principal component. Right: combined

symplectic and linear features space: 10 symplectic transformed first PC and last 7 PC of the

normalized spectrum. The decreasing curves give the false alarm rate. Each of the three increasing

curves provides the rate of missing the fault for three different fault situation. ( - no fault, ..

bearing race hole, -- unbalance, .- broken rotor bar)

One possible measurement of the quality of the classification technique is the decision

error at the optimal decision threshold. The proposed technique achieves a decision error

of %. This result is comparable with different approaches that have been applied

to this problem at SCR1 including, among others, MLP (11%) and RBF (10%) autoassoci-

ators, nearest neighbor (18%-32%), and hypersphere (37%) clustering, PCA (12%), or

maximum measure (in roughly 2000 dimensions) (11%).

5  Conclusions

The factorization of a joint probability distribution has been formulated as a minimal

mutual information criterion under the constrain of volume conservation. Volume conser-

vation has been implemented by a general class of nonlinear transformations - the sym-

plectic maps. A gaussian upper bound leads to a computational efficient optimization

technique and favors normal distributions at the output as optimal solutions. This in turn,

facilitates density estimation, and can be used particularly for novelty detection. The pro-

1.  Siemens Corporate Research, Inc., 755 College Road East, Princeton, NJ 08540
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posed technique has been applied successfully to the real world problem of motor fault

detection.
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