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Abstract

In independent component analysis (ICA) an instantaneous mix of sources can be recovered
using maximum Likelihood (ML). In Convolutive blind source separation (BSS) the mixture
arises as a combination of di�erently convolved source signals due to time delays and a rever-
berating acoustic environment. Instead of modeling a particular time instant now a time window
of the mixed signals has to be modeled. This allows to combine ICA with traditional ML signal
modeling techniques. Here we use an auto-regressive (AR) model of the sources leading to a gen-
eralization of contextual ICA [18] to the convolutive case. This may improve source separation
avoiding the typical whitening of the sources, and may allow us to incorporation simultaneous
enhancing of the signal based on the AR models.

1 Introduction

Independent component analysis (ICA) aims to �nd statistical independent signals in an instanta-
neous linear mix. This concept was �rst introduced and formalized by Comon [7]. In recent years
increasing interest in this concept arose in the neural network and signal processing community.
There are wide range of possible applications. In the neural network community it has been sug-
gested as a version of the well know concept of redundancy reduction that has been repeatedly
considered as an underlying principle in sensory formation [5, 3, 8, 16]. For signal processing the
interest arises in the context of sensor arrays, source localization, sonar applications, multidimen-
sional blind channel equalization, spread-spectrum coding, QAM coding, and speech enhancement.

In the context of Neural Networks it can be formulated as �nding a representation of the data
with minimal mutual information in each output coordinate [8]. It can also be formulated as the
representation that maximizes the information transmitted through a properly designed network
[6, 11]. In the context of signal processing however its formulation as a Maximum Likelihood (ML)
problem [19] allows the extension of ICA to Blind Source Separation (BSS) by properly adding
the time dimension. In the instantaneous mixing case, modeling the time correlations of the signal
improves the quality of the separation [18]. In contrast to the instantaneous mix, in convolutive
BSS the mixture arises as a combination of di�erently convolved independent source signals due
to time delays and a reverberating acoustic environment. ML allows us to combine ICA with
traditional signal modeling techniques like the standard AR model, mixture models and others,
which use speci�c models of the temporal properties of the sources. We will demonstrate here
the combination of AR models and ICA which represents the extension of contextual ICA [18] to
the convolutive case. This may improve source separation, avoiding the typical whitening of the
sources. This may allow us also to combine source separation with ML signal enhancement based
on AR models of the acoustic source signals, a problem on which we are currently working.

1



Earlier work on convolutive BSS has been presented in [23, 24]. It is based on a no-parametric
approach whereby cumulants are used to capture the higher order statistic of the signal, leading
to somewhat expensive and complicated objective functions. In contrast, in ML one tries to �nd a
parametric model for the densities that captures higher statistic of the signals indirectly.

Higher order statistic can be also captured by using prior knowledge of the single source density
functions and incorporating proper non-linearities into the objective functions. This is done in [12],
where a multidimensional generalizations of well known blind equalization algorithms is presented.
Very recently in [2] an alternative derivation for a similar algorithm has been given. There again,
the underlying assumptions leads to signal equalization. A generalization of the instantaneous un-
mixing based on maximum entropy has also been suggested [13], but an explicit derivation is so far
lacking. The present work remedies that lack and represents an extension of previous work in the
sense that is does not assume white sources (equalized model sources).

In the �rst section 2 we lay out the ML model for a time window of the detected convolutive
mixtures in terms of statistical independent model sources. The following section 3 discussed
some issues related to the modeling of temporal correlations of single sources and introduces the
AR model into our framework. Section 4 derives a gradient expression of the likelihood function,
leading to e�cient update equations for the un-mixing �lters. The expressions however can be
only derived by making a circularity assumption on the signals, and �lter, which cuts some of the
generality of the �rst two sections.

2 Convolutive Mixture Model

Assume N independent sources (s1(t):::sN (t))
> = s(t) mixed in a unknown linear medium,

xi(t) =
NX
j=1

1X
�=0

hij(�)sj(t� �) (1)

We observe the mixtures (x1(t):::xN (t))
> = x(t). To undo the e�ect of this causal �ltering and

mixing we require (eventually in�nite size) non-causal �nite impulse response (FIR) �lters. We
wish to �nd N statistically independent signals (y1(t):::yN (t))

> = y(t) with a multidimensional,
non-causal FIR �lter w(�K):::w(K) from the convolutive mixtures, where we limit us to a �nite
�lter size K. Every w(�) here represents a N �N unximing matrix for the time lag � ,

yi(t) =
NX
j=1

KX
j=�K

wij(�)xj(t� �) (2)

Note that we are not explicitly aiming to recover the original signals s(t) that lead to the
mixtures x(t). We will merely try to model the mixtures by independent model sources y(t).
The true sources s(t) may di�er from these recovered independent signals y(t) by an arbitrary
convolution and permutation [2]. We will try however to match the statistics of the sources by
using linear prediction or signal subspace modeling techniques.

For the ML approach we require a density function of the observed signals as a function of
the model parameters, which we will for now generically denote �. We will formulate the density
function for a time window of the mixture signalsX(t) = (x(t); :::;x(t+T )). This stands in contrast
to previous formulations of the problem that have considered the likelihood of a single time instance
only [18, 15, 2].
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In order to express the density function in the space of the model sources we will consider the
conditional density of the signals within the window condition on the signals outside the window
which we will denote by X nX(t) = x(�1); :::;x(t � 1);x(t + T + 1); :::;x(1).

p(X(t)jX nX(t); �) =

���� @Y (t)@X(t)

���� p(Y (t)jX nX(t); �) (3)

Here Y (t) = (y(t); :::;y(t + T )) is the corresponding window in the model source space1. The

Jacobian @Y (t)
@X(t) is a NT �NT matrix with coe�cients,

@yi(t)

@xl(r)
=

NX
j=1

KX
�=�K

wij(�)
@xj(t� �)

@xl(r)
= wil(t� r) (4)

where i; l = 0:::T and r = 0::K, and w(�) vanishes for values outside �K � � � K. It is instructive
to arrange the coe�cients of the Jacobian such that the matrix w(0) lies on the diagonal blocks,

@Y (t)

@X(t)
=

0
BBB@

w(0) w(�1) ::: w(�T )
w(1) w(0) ::: w(1� T )
::: ::: ::: :::

w(T ) w(T � 1) ::: w(0)

1
CCCA �W (5)

For a causal FIR the upper block triangle vanishes and the determinant in (3) is given by the
determinant of w(0),

����@Y (t)@X(t)

���� = jw(0)jT if w(�) = 0 for � < 0 (6)

Although some have made these simplifying assumptions [4, 22], we wish to keep a non-causal
�lter, and will instead restrict ourself in section 4 to a circulant W in order to arrive to an e�cient
algorithm that can be implemented using the fast Fourier transform (FFT).

Now we introduce the independence assumption for the model sources by replacing in (3) the
joint density of the model source by the product of the density of the individual sources,

p(X(t)jX nX(t); �) = jW (t)j
NY
i=1

p(yi(t):::yi(t+ T )jX nX(t); �) (7)

3 Source Modeling

To our knowledge all current BSS algorithm make at this point for each ith model source a time
independence assumption in (7) for the joint density of yi(t):::yi(t + T ) [12, 13, 15, 2, 4] This is
for any reasonable acoustic signal not an appropriate model, and leads in their experiments to a
whitened signal recovery.

1For the ML approach one requires the density of the observations X(t) as a function of X(t) itself and some model
parameters �. Therefore, we have to replace Y (t) in (3) by its de�nition (2). Note that is not possible to write Y (t)
as a function of X(t) only. The model source values in the window at time t will depend by de�nition (2) on mixture
values before and after the current frame. The conditioning of the probability on X nX(t) is therefore a crucial step
in order to make that substitution. In section 4 however, we consider periodic signals and the conditioning becomes
super
uous.
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The �eld of signal modeling in particular for speech enhancement o�ers a variety of ML ap-
proaches to single channel modeling. At this point many of these approaches can be combined to
source separation by inserting the corresponding model probability into (7). We note however that
all e�cient algorithms are based on a linear dependency of the the variables (y(t):::y(t+T ))> = y(t)
and mostly a Gaussian density2.

For source separation however we require a non-Gaussian model since statistical independence
is not uniquely de�ned for more than one Gaussian component in the mixture [25].

If one uses linear time correlation as described by a covariance matrix or linear prediction
coe�cients (LPC) the parameters introduced are equivalent to the parameters of the convolutions
of the un-mixing FIR. The hope is however that the parameters describing the un-mixing and the
parameters describing the source signal have di�erent stationarity time scales. Speech for example
will be stationary only within some 20ms - 40ms time frame, while the un-mixing coe�cients
should remain constant at least on a seconds scale, assuming that the location of the sources
and the environment remains constant over that time. Single channel algorithms that adapt to
varying statistics on a millisecond rate, as required by any single microphone speech enhancement
algorithm, will extract to a certain extend the rapid varying portion of the linear correlations, while
the slower converging source separation will pick up the slow varying time correlation due to the
linear medium that mixes the source signals.

For short times on the order of 100-200 samples at 8kHz sampling rate the second order statistics
of speech is well described with a multivariate Gaussian density. The covariance matrix however
will change for larger time periods. The overall density will therefore be an accumulation or mixture
of the instantaneous statistics. The net result of such a mixture is that the overall joint distribution
will have high kurtosis, i.e. a strong mass at low amplitudes due to silence periods and long tales for
high amplitude peeks. In the BSS literature the signal distribution has been therefore approximated
by non-Gaussian distributions. The strongest approximation ignores time correlations, and assumes
a high kurtosis one time step accumulated density f(y),

p(y(t):::y(t+ T )) �
TY
�=0

f(y(t+ �)) (8)

A generalized Gaussian [13] has been used for f(y) or a mixture of two zero mean Gaussian with
variances describing the silence and signal amplitudes [15]. A better approximation might result
if we avoid the time independence assumption, and capture linear time correlations with a matrix
�(t) estimated in some window around t,

p(y(t):::y(t+ T )) � f(y>(t)�(t)y(t)) (9)

One might use also a multiple Gaussian model that allows for di�erent covariance �(t) for
the silence, voiced and unvoiced, states up to a full hidden Markov model that incorporates state
transition probabilities of the di�erent sounds. These are routinely used for speech recognition
resulting however in rather expensive models that require prior training.

We suggest a short term estimation of the linear correlations according the subspace or linear
prediction methods used in speech enhancement [10, 14, 20, 9]. Assuming a correlation time P for
which �ij = 0 if i� j > P we can expand the density of a frame of size T as,

2We have ignored here and in the reminder of this section the model source index i since we are dealing with a
individual channel. Bold notation now refers to the vector of signal values in the time window of size T for a single
channel.
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Figure 1: Schematic representation of the suggested signal modeling and its relation to previous
convolutive BSS algorithms. Left: The AR model whitens the signal producing the error signal
e(t) which is used in turn for the BSS update. Details can be seen in the �nal update equation
(26). Right: In previous work no modeling of temporal correlations of the model signal leads to
separation and equalization.

p(y(t):::y(t + T )) = p(y(t):::y(t+ P � 1))
t+TY

�=t+P

p(y(�)jy(� � 1):::y(� � P )) (10)

The auto-regressive (AR) model makes a linear prediction �y(t) of y(t) from the past P samples,
e(t) = y(t) � �y(t) = y(t) � PP

�=1 a(�)y(t � �), where e(t) is considered to be the error of the
prediction, and a(�) the linear prediction coe�cients (LPC). The corresponding density function
is then,

p(y(t)jy(t� 1):::y(t� P );a) = p(a>y(t)), with a = (1;�a(1); ::;�a(P ))> (11)

Combining this source signal model for each of the N sources i with the source independence
model we obtain the overall logarithmic likelihood3,

L(W;ai:::aN ) = ln jW j+
NX
i=1

t+TX
�=t+P

lnp(a>i yi(�)jX nX(�);W )+
NX
i=1

ln p(yi(t):::yi(t+P �1)j:::) (12)

We will assume the LPC parameter to be constant within a time frame but change from frame
to frame4. The un-mixing �lters we assume constant throughout time. For P << T we can neglect
the last term here, and initialize the sum in the second term at � = t.

The extension done in this section compared to previous work is schematically depicted in �gure
1. The present formulation should avoid the whitening of the model sources if the order P of the
AR model is su�ciently large and the window size T in which to compute the AR parameters is
su�ciently small to capture the fast variation of speech.

If the densities can in fact be described in a short time frame of size P by a (zero mean) Gaussian
we have,

3The conditionalization on X n X(�) means nothing else that we can now substitute all y() using (2). In the
next section however it will be necessary to to assume periodic signals in order to obtain an e�cient algorithm for
updating W . The conditioning on the previous frame becomes then super
uous.

4To be precise we should consider the Likelihood of multiple frames by adding frame index k to a, and setting
t=k*T, while adding over all frames
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p(y(t):::y(t + P )) = N (0;�) (13)

The conditional density of a time sample y(t) given its past P samples is then described by a
one dimensional normal distribution with mean �y(t) and variance � depending on the correlation
matrix �,

p(y(t)jy(t� 1):::y(t � P )) = N (�y(t); �) (14)

The instantaneous prediction coe�cients a, which de�ne the mean �y(t), and the prediction
accuracy, i.e. variance �, are in this case explicitly determined by the covariance matrix �,

a = �+���1� , and � = �=�� = �+ � �+���1� ��+ (15)

� =

 
�+ �+�
��+ ��

!
=

0
BBB@

�11 �12 ::: �1P
�21
:::
�P1

�22 ::: �2P
::: ::: :::
�P2 ::: �PP

1
CCCA (16)

We suggest to compute these coe�cients from the sample autocorrelation matrix �̂ estimated
with the samples in the current window of since T . We may use the expressions above or more
e�ciently use Levinson-Durvin recursion on the signals y(t) to compute the LPC from �̂ [17]. This
recursion gives an analytic solution for the LPC coe�cients with a minimum least squares criterion,
which is equivalent to the ML using the suggested signal model for a given frame [17].5

4 Stochastic ML gradient

In other to optimize the logarithmic likelihood (12) also for the un-mixing �ltersW we use gradient
descent. The main di�culty in deriving a gradient expression of (12) is to �nd a feasible expression
for the derivative of the Jacobian (5). In fact, it will be necessary to assume that W is a circulant
matrix,

W = (wij(n;m)) �

0
BBB@

w(0) w(T ) ::: w(1)
w(1) w(0) ::: w(2)
::: ::: ::: :::

w(T ) w(T � 1) ::: w(0)

1
CCCA (17)

The coe�cients n;m denote the block column and row index, while the subscript index i; j refer
to the index within each block. Columns are indexed therefore by i; n and rows by j;m. With this
notation we can write now the gradient as,

@ ln jW j
@wij(n;m)

=
TTX
n0m0

NNX
i0j0

@ ln jW j
@wi0j0(n0;m0)

@wi0j0(n0;m0)
@wij(n;m)

=
1

jW j
TTX
n0m0

jWij(n
0;m0)j�n�mn0�m0 (18)

where �zz0 = 1, if modulo(z; (T + 1)) = modulo(z0; (T + 1)), and 0 otherwise. We have used

5To be precise the ML estimate of the LPC coe�cients is computed with the so called covariance method which
uses a somewhat di�erent iteration [21].
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he fact that for any invertible, square matrix A, @ ln jAj=@aij = jAijj=jAj, where jAij j is the the
determinant of the matrix obtained after removing the ith row and jth column in A. Computing
these determinants is an expensive operation of order O(N3T 3). To avoid this we will use the
argument commonly used in ICA algorithms, which was �rst introduced by Amari [1]. We multiply
the gradients with a positive de�nite matrix W>W , to obtain the so called natural gradient. First
consider

�
@ ln jW j
@W

W>
�
iu
(n; l) =

TNX
mj

@ ln jW j
@wij(n;m)

wuj(l;m)

=
TNX
mj

1

jW j
TTX
n0m0

jWij(n
0;m0)j�n�mn0�m0wuj(l;m)

=
1

jW j
NX
j

TTX
n0m0

jWij(n
0;m0)jwuj(l � n+ n0;m0)

=
1

jW j
TX
n0

(
jW j if n0 = l � n+ n0 and i = u
0 otherwise

=
T

jW jI (19)

Read above wij(n;m) = wij(modulo(n; (T + 1));modulo(m; (T + 1))) if indexes n;m exceed their
range 0::T . Multiplying this identity matrix I with W �nally leads to,

@ ln jW j
@W

W>W = TW (20)

Now we need to compute the gradient of the second term in (12).

@
P

k� ln p(a
>
k yk(�))

@wij(z)
=

@

@wij(z)

NX
k=1

t+TX
�=t

ln p(
PX

� 0=0

ak(�
0)yk(� � � 0)) (21)

=
t+TX
�=t

g(a>i yi(�))
PX

� 0=0

ai(�
0)

@

@wij(z)
yi(� � � 0) (22)

=
t+TX
�=t

g(a>i y
>
i (�))

PX
� 0=0

ai(�
0)xj(� � � 0 � z) (23)

where g(e) = @ ln p(e)=@e. These coe�cients for z = 0::T represent the �rst column of the cor-
responding circulant matrix @=@W arranged analogous to (17). In order to simplify the following
multiplication with W>W one has to assume periodic signals x(t), i.e. x(t) = x(t + T + 1). The
model signals y(t) will then be periodic with period T +1 as well. This assumption not only simpli-
�es the expressions but allows us to implement the convolutions with a discrete Fourier transform
using a FFT. After some manipulations we obtain, again for the elements of the �rst column of a
circulant matrix,

 
@
P

k� ln p(a
>
k yk(�))

@W
W>W

!
ij

(z) =
t+TX
�=t

NX
u=1

t+TX
� 0=t

g(a>i yi(�))a
>
i yu(� + � 0 � z)wuj(�

0) (24)
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real microphone recordings convolutive BSS with AR model

Figure 2: Separation of real recordings with two microphones in a reverberant environment (o�ce
room) with algorithm (26) with T = 512, which corresponds at 8kHz to 64ms. The AR parameter
were computed in each frame with the Levinson-Durvin recursion with P = 20.

These convolutions now can best be performed in the frequency domain. Transforming the
natural gradient of (12), as expressed by the sum of (20) and (24), into the frequency domain
involves applying the orthonormal coordinate transformation expressed by a matrix F with elements
F�� =

1p
T+1

e�i��2�=(T+1), i =
p�1, which results for a circulant matrix like W into6,

FWF�1 = diag(W(0); :::;W(T )) (25)

That is, the Fourier coe�cients W = Fw of the circulant �lter w = (w(0); :::; w(T ))> represent
the diagonal elements of a diagonal matrix. According to the convolution theorem the convolutions
in (24) are performed by multiplying the Furrier coe�cients independently. The overall gradients
separate therefore in the frequency domain. Combining (20) and (24) and transforming the result
into the frequency domain we obtain the total natural gradient @W(�) in each frequency �.

@Wij(�) =Wij(�) +G [Ai(�)Yi(�)]
NX
u=1

A�i (�)Y�u(�)Wuj(�) (26)

where G[] is an operator that applies the function g() in the temporal domain, G[Y] = Fg
�
F�1Y

�
,

and the Fourier coe�cients are given by, Ai = F (ai(0); ai(1); :::; ai(P ); 0; 0; :::; 0)
> and Yi = Fyi.

This result represents the extension of contextual ICA [18] to the convolutive case. It also
represents a generalization of the equations suggested in [12, 13], which one obtains for P = 1,
i.e. a time independence assumption. Note also that very recently [2] gave a explicit derivation of
a natural gradient algorithm with in�nite size FIR for the un-mixing leading to equations similar
again to the ones proposed in [12, 13]. They do however not report results on real room recordings.
In �gure 2 we see the results obtain for two speakers in a noisy o�ce environment. The separation
improves the signal to background ration. It does however not separate the signal completely. The
results depend on the type of signal and the choice of the density p(). This is a current subject of
experimentation and study in the context of higher order statistics.

6Here we are writing for simplicity only the one-dimensional case. The multi-dimensional case is a trivial extension.
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