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Abstract— Source separation arises in a surprising number of signal processing applications, from speech
recognition to EEG analysis. In the square linear blind source separation problem without time delays,
one must find an unmixing matrix which can detangle the result of mixingn unknown independent sources
through an unknown n� n mixing matrix. The recently introduced ICA blind source separation algorithm
(Baram and Roth 1994; Bell and Sejnowski 1995) is a powerful and surprisingly simple technique for solving
this problem. ICA is all the more remarkable for performing so well despite making absolutely no use of the
temporal structure of its input! This paper presents a new algorithm, contextual ICA, which derives from a
maximum likelihood density estimation formulation of the problem. cICA can incorporate arbitrarily com-
plex adaptive history-sensitive source models, and thereby make use of the temporal structure of its input.
This allows it to separate in a number of situations where standard ICA cannot, including sources with low
kurtosis, colored gaussian sources, and sources which have gaussian histograms. Since ICA is a special case
of cICA, the MLE derivation provides as a corollary a rigorous derivation of classic ICA.

1 The ICA algorithm

In the blind source separation problem, one is given the output of a number of microphones, each of which records
a mixture of a number of sources. The task is to recover the sources. In the blind linear square case, there are the
same number of microphones as sources, and the mixing is linear. In the absence of time delays or echos, the mixing
is characterized by an n� n matrix A, so if s(t) is a vector of the sources at time t then x(t) = As(t) is a vector
of the signals received by the microphones at time t. Naturally we will assume thatA is full rank.

In the absence of noise, which is the case we consider, the solution to this problem is to find a full rank n � n
matrix W which has the property that WA has exactly one nonzero element in each row and each column. We
denote the result of the unmixing process as y(t), and note that y(t) = Wx(t) = WAs(t). If we have found an
appropriateW then the productWA will be equal to the product of a diagonal matrix with a permutation matrix,
and the elements of y(t) will be the same as the elements of s(t), but shuffled and scaled.

With no prior information about A or the source signals si(t), the problem might sound impossible. However,
for non-gaussian distributions, it is not. An algorithm called independent components analysis was introduced by
Comon (1994). This version of the algorithm approximates some distributions by their first few moments, which is
both approximate and computationally burdensome. Single coordinate higher order cumulants are used in a some-
what simpler algorithm by Obradovic and Deco (1995). A surprisingly simple, but inexpensive and exact, variant
of the Comon (1994) algorithm was recently introduced (Baram and Roth 1994; Bell and Sejnowski 1995). In a
now standard abuse of notation, this new algorithm will be refered to as ICA. This simpler ICA algorithm takes
each component of the vector y(t) and passes it though a saturating monotonic nonlinearity, giving a vector z(t).
Gradient descent is used to modify the components of the matrixW and the bias terms of the nonlinearities in order
to increase the entropy of the distribution of z(t) induced by the input distribution. ICA was motivated by consid-
erations of biological optimality, which flow from experiments showing that, when presented with natural stimuli,
many neurons appear to make good use of their available axonal channel capacity (Bialek et al. 1991).

The ICA algorithm, in various configurations, has been applied to a surprising number of problems, from separation
of digitally mixed speech signals (Bell and Sejnowski 1995), to separating the componenets of electroencephalo-
graphic data (Makeig et al. 1996), to blind deconvolution (Bell and Sejnowski 1995), to finding the higher-order
structure of a natural sound (Bell and Sejnowski 1996b), and even to financial forecasting (Baram and Roth 1995)
and image processing (Bell and Sejnowski 1996a). There have been attempts to generalize the algorithm, the most
notable being extensions to tolerate time delays and echos introduced by Torkkola (1996a, 1996b).

The usual intuition for why ICA tends to separate sources runs roughly as follows: if the output entropy is maxi-
mized, then the components of the output vector must be statistically independent. If so, then the signals must also
be statistically independent prior to the nonlinearity. That being the case, the sources must be separated.

However, there are problematic cases which ICA cannot separate. For instance, a mixture of two uniform distri-
butions, or more generally two low-kurtosis distributions, is not properly separated. (Although separation in this
case might be achieved by using a special nonlinearity chosen for the problem.) Since a two-dimensional gaussian
distribution is rotationally symmetric, a mixture of white gaussian sources is inherently impossible to separate. Any
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Figure 1: The ICA algorithm fits this parameterized generative model to data.

algorithm that makes no use of the temporal structure of its inputs can by definition make use of only the cumula-
tive histograms of its inputs. If these histograms are gaussian, then such an algorithm will be in principle unable to
separate. Since ICA makes no use of the temporal structure of its inputs, it is in principle unable to separate sources
whose histograms are gaussian. This includes, for example, colored gaussian sources, speech or music which hap-
pen to have gaussian histograms, etc. It is sometimes speculated that any mixture of sources with high-kurtosis
histograms is separable by ICA—but there is as yet no proof of this.

We shall now proceed to derive an ICA-like algorithm that can make use of temporal context. We do this by refor-
mulating the blind source separation problem in a maximum likelihood framework.

2 Source separation and maximum likelihood density estimation

Consider the abstract problem of density estimation from samples. One desires to estimate some true distribu-
tion p(x) over a spaceRn from which samplesx1;x2; : : : have been drawn. The maximum likelihood approach
(Mendel and Burrus 1990) is to use a density estimator of some parametric form, sayp̂(x;w). Given a setting of
the parameter vectorw, this will constitute the estimated probability density. In order to setw appropriately, we
find a value for it that minimizes a measure of the difference betweenp(x) andp̂(x;w). An appropriate difference
measure is the asymmetric divergence

G[p; p̂] =

Z
p(x) log

p(x)

p̂(x;w)
dx = H [p]�

Z
p(x) log p̂(x;w) dx (1)

This is the entropy of the (fixed) input distributionp minus the likelihood ofp givenp̂, and thew which minimizes
this maximizes the likelihood; hence the term. (In a full Bayesian treatment, a prior distribution overp̂ would have
to be specified. This term would manifest itself here as an extra term giving the description length of the modelp̂.)

AlthoughG itself is not available to us, an unbiased estimate of it can be obtained by taking a samplex from p,

bG = H [p]� log p̂(x;w) (2)

In order to apply a stochastic gradient optimization method, we wish to find an unbiased estimate ofdG=dw (Rob-
bins and Monro 1951). Due to the linearity of differentiation,d bG=dw = �(d=dw) log p̂(x;w) is such an estimate.

For blind source separation, we consider the parametric form forp̂(x;w) shown in figure 1. Letu be ann-
dimensional vector whose componentsuj are drawn fromn independent parameterized one-dimensional density
functionsfj(uj ;wj). Now letW be ann�nmatrix, and letx =W�1u. The consequent density onx is denoted
p̂(x;w), where the parameter vectorw is a concatenation of the elements ofWwith the parametersw1; : : : ;wn of
the densitiesf1; : : : ; fn. The components ofu represent then independent sources which we would like to recover
from the observed linear mixx, andW represents the appropriate unmixing matrix.

To calculated bG=dw we expandlog p̂(x;w) = log jWj +
P

j log fj(uj ;wj) whereu = Wx. We then obtain
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Figure 2: The contextual ICA (cICA) algorithm uses conditional densities which are not memoryless.

formulas for the two different sorts of parameters involved,

d bG
dW

= �W�T �

�
f 0j(uj ;wj)

fj(uj ;wj)

�
j

xT (3)

d bG
dwj

= �
dfj(uj ;wj)=dwj

fj(uj ;wj)
(4)

where (expr(j))j denotes the column vector whose elements are expr(1); : : : ; expr(n).

This is precisely the ICA algorithm, where our fj(uj ;wj) is the derivative of the Bell and Sejnowski (1995) satu-

rating monotonic nonlinearity g(uj), and our parameter vector wj holds the jth component of their w0 vector of
bias terms, fj(uj ;wj) = g0(uj + (w0)j): In our formulation no squashing nonlinearity is ever calculated, except
perhaps as a common subexpression in the computation of the derivatives of the densities. However, the output of
the squashing nonlinearity is never actually used for anything in classic ICA.

3 Generalizing ICA

Under this MLE formulation of source separation, there is no restriction on the form of the distributions fj . The
density functionfj(uj) can have complex structure, and can be conditioned on other information—suchas its recent
history (as shown in figure 2), or even information from other modalities. All that is required is that the components
of u be conditionally independent. In general, fj can be of the form

fj(uj(t)ju(t � 1);u(t� 2); : : : ; other information; : : : ;wj)

We call this algorithm contextual ICA or cICA. To give a vivid example, if the sources were different people speak-
ing, then the “other information” might be lip position measured using a visual modality, and uj(t) would be pri-
marily conditioned on the recent history of that source itself, uj(t�1); uj(t�2); : : :, but there might also be some
small influence from other speakers. Although fj can in principle be made arbitrarily complex, there is no practical
reason to make it more complex than is necessary to permit proper separation of the sources.

Of course we must still calculate dfj(uj ;wj)=dwj as per equation 4. In doing so, the historyuj(t�1); uj(t�2); : : :
of source j is treated as constant with respect to changes inwj . This is correct, because the unmixing depends only
on the matrixW and not the parameterswj of the individual source distributions. On the other hand, changingW
changes the estimated recent history of source uj , which in turn has an influence on fj . However we use equation 3
without adding these extra terms. The approximation of dropping these cross terms is ubiquitous in time series
analysis, and in this case the successful results of our simulations leads us to believe that it is benign.



−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15
Filtered and Mixed Uniform Distributions

−2
−1

0
1

2

−2

−1

0

1

2
0

0.05

0.1

0.15

0.2

es
tim

at
ed

 d
en

si
ty

source 1source 2

Estimated Density in Unximed Source Space

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Recovered Source Values

Figure 3: cICA using a history of one time step and a mixture of five logistic densities for each source was applied
to 5,000 samples of a mixture of two one-dimensional uniform distributions each filtered by convolution with a
decaying exponential of time constant of 99.5. Shown is a scatterplot of the data input to the algorithm, along with
the true source axes (left), the estimated residual probability density (center), and a scatterplot of the residuals of
the data transformed into the estimated source space coordinates (right). The product of the true mixing matrix and
the estimated unmixing matrix deviates from a scaling and permutation matrix by about 3%.

4 Experiments

In our simulations we chose to make fj a weighted sum of logistic density functions1 with variable means and
scales, and make these means linear functions of the recent history of source j. This allowed us to revert to classic
ICA by setting the amount of temporal context to zero and the number of logistic densities in the sum to one. This
density estimator, and the corresponding derivatives, are described in detail in appendix A.

Here we experiment with two distributions that conventional ICA is unable to separate. The first is an extremely
simple two-dimensional distribution with no temporal context: both x1 and x2 are chosen iid from a uniform dis-
tribution. Conventional ICA incorrectly rotates the distribution 45 degrees, for reasons explained very well by Bell
and Sejnowski (1995) in their discussion of this problematic case. The cICA algorithm successfully separates the
sources. To make the problem more challenging, we then filtered each source through low-pass filter. The resulting
time series has very gaussian histograms, but as shown in figure 3, cICA again correctly separates the sources.

The second experiment is somewhat more involved. Ten acoustic sources, which include the six used by Bell and
Sejnowski (1995), were obtained, courtesty of Dr. Tony Bell. As shown in figure 4, the cumulative density of each
source was measured and used to construct a monotonically increasing normalizer which, when applied to each
sample from a source, gave the time series a gaussian histogram. These preprocessed time series were mixed using
a random matrix. As shown in figures 5 and 6, ICA was unable to separate the resulting babble, but cICA separates
properly, even when using only a very small amount of temporal context.

5 Discussion

In deriving cICA we have seen that ICA can regarded as a gradient method for performing maximum likelihood
density estimation using a linear historyless factorial model and rigid source densities. The resulting error measure
is naturally the same as in the Bell and Sejnowski (1995) derivation, but taking an MLE viewpoint allows a number
of generalizations, which allow cICA to to separate a wider variety of sources.

A weakness this method shares with other blind source separation techniques is that it not robust to modulation of the
dimensionality. In other words, it is not designed for a non-square mixing matrix. If x = As andx is n-dimensional
but s is m-dimensional, then in the case that n > m the algorithm presented here can make no good use of the extra
information but to imagine that a few extra Gaussian sources were mixed into the signal. This may perhaps be
solved by using aW matrix of a special form. In the case that n < m no linear unmixing can separate the sources,
and it seems that a strong prior will be necessary to distinguish a single complex one-dimensional source from the
one-dimensional sum of two simple independent one-dimensional sources, and a nonlinear unmixing process will
be necessary to separate them.

1If g(t) is the fraction of the susceptible population already infected, then the Verhulst (1844) epidemic equation, dg=dt = g(t)(1� g(t)),
expresses a random-contact homogeneous-population model of growth. This results in a logistic cumulative distribution function g(t) = 1=(1+
exp�t). The logistic density function is h(t) = dg=dt, the corresponding probability density of contracting the disease at time t.
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Figure 4: Histogram of samples from one of the acoustic sources used in the mixture below (left), nonlinear trans-
formation applied to the data (center), histogram of transformed data (right).
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Figure 5: Scatterplot of linear mixture of two gaussianified acoustic sources (left), and unmixing error of cICA (us-
ing linear predictive sources with a single logistic) as a function of the length of the history used in the predictive
filter (right). The zero history case corresponds to classic ICA, which fail to separate due to the gaussian histograms.
(The parallelogram-shaped boundary and the stripes in the scatterplot on the left are artifacts of the signal quanti-
zation and the digital mixing.)
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Figure 6: Plot of the elements of the product of the true mixing matrix and the estimated unmixing matrix, with
each row normalized to make the largest element equal to one, and the rows permuted to place large elements along
the diagonal. If the unmixing is perfect, the result will be a ridge along the diagonal with all off-diagonal elements
equal to zero. The ten sources mixed are acoustic sources (courtesy of Tony Bell) which have had a monotonic non-
linearity applied to them to make their histograms exhibit gaussian statistics (see figure 4.) These are mixed using
a random mixing matrix, and cICA with linear predictive sources and a single logistic density is used to estimate
the unmixing matrix. The length of the history used is varied from zero, which corresponds to conventional ICA
(left), to one (center), to two (right).

Finally, we would like to compare ICA with PCA. The principal components algorithm (Hotelling 1933) fits a linear
mixture of one-dimensional Gaussian sources of minimal variance to samples from a high-dimensional distribution.
ICA performs a similar action, but instead uses a linear mixture of potentially non-Gaussian distributions. As such,
ICA might be viewed as a linear but non-Gaussian generalization of PCA—except that without PCA’s minimum
variance constraint, if Gaussian distributions are used for the fj distributions of ICA, the unmixing matrix W has a
great deal of freedom. It need not be orthogonal, and the coordinate system it embodies need have no special status.
A challenge that remains with us is to find a sensible nonlinear analogue of PCA. One algorithm was proposed



for this purpose by Parra, Deco, and Miesbach (1995), who replaced the orthogonal linear mixture of PCA by a
symplectic mixing function while retaining PCA’s minimal variance Gaussian source model. Unfortunately the
symplectic map has a great deal of undesired freedom, so again the coordinate system it produces need have no
special status.

6 Future work

Our current work concentrates on combining source separation with deconvolution, to enable the system to both
tolerate and cancel the effects of echos and time delays between the sources and the microphones. An inherent
ambiguity is introduced, which amounts to a freedom of one filter per source. We hope to resolve this ambiguity in a
more symmetric fashion than in Torkkola (1996a), where identity filters are placed along the diagonal of the matrix
of deconvolution filters. We are also exploring the incorporation of microphone nonlinearities, and microphone
noise of known distribution, into the model.
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A Linear predictive source distributions

In the simulations of section 4 the fj(uj ;wj) distribution used is a mixture of logistic densities,

fj(uj(t)juj(t� 1); uj(t� 2); : : : ;wj) =
X
k

mjk h((uj(t)� �ujk)=�jk)=�jk (5)

where �jk is a scale parameter for logistic density k of source j and is an element ofwj , and the mixing coefficients
mjk are elements of wj and are constrained by

P
k mjk = 1. The component means �ujk are taken to be linear

functions of the recent values of that source,

�ujk =
X
�=1

ajk(�) uj(t� �) + bjk (6)

where the linear prediction coefficients ajk(�) and bias bjk are elements of wj .

To perform stochastic gradient descent it is necessary to calculate the derivative dfj(uj ;wj)=dwj . We ac-
complish this using the following equations. For conciseness, when we below refer to fj , hjk, and their
simple derivatives f 0j , h0jk, we leave off the arguments, which are the same as the corresponding argu-
ments above. The h logistic density function and its cumulative distribution function g are as in footnote 1.

d bG
dmjk

= �
hjk

�jk fj
(7)

h0jk = hjk(1� 2g) (8)

d bG
d�jk

=
(hjk �jk + (uj � �ujk)h

0

jk)mjk

�3jk fj
(9)

d bG
dajk(�)

=
mjk h

0

jk uj(t� �)

�2jk fj
(10)

d bG
dbjk

=
mjk h

0

jk

�2jk fj
(11)

f 0j =
X
k

mjk h
0

jk

�2jk
(12)

After each weight update the mixing coefficients must be normalized, mjk  mjk=
P

k0 mjk0 :

B Stochastic gradient descent

In the above experiments a number of techniques were used to improve the efficiency and robustness of the stochas-
tic gradient descent procedure as applied to cICA.

First, rather than performing gradient descent directly on the scale parameters �jk and mixing parameters mjk,
we performed gradient descent upon their logarithms. Using such log scale parameters automatically guarantees
�jk > 0. In addition, the stability and robustness of the gradient descent process are improved (Nowlan and Hinton
1992; Pearlmutter 1992).

Second, an important contribution to the computational efficiency of our experiments is due to Amari, Cichocki,
and Yang (1996), who post-multiply their ICA-like gradient by WTW. Since this is a positive-definite matrix it
does not effect the stochastic gradient convergence criteria, and the resulting quantity

�W / �
d bG
dW

WTW =W+

�
f 0j(uj ;wj)

fj(uj ;wj)

�
j

uTW (13)

is therefore an admissible pseudo-gradient. This post-multiplication neatly eliminates the matrix inversion, and
makes the algorithm scale-invariant to the true mixing matrixA.


