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Geometric Source Separation: Merging Convolutive
Source Separation With Geometric Beamforming

Lucas C. Parra and Christopher V. Alvino

Abstract—Convolutive blind source separation and adaptive
beamforming have a similar goal—extracting a source of interest
(or multiple sources) while reducing undesired interferences. A
benefit of source separation is that it overcomes the conventional
cross-talk or leakage problem of adaptive beamforming. Beam-
forming on the other hand exploits geometric information which is
often readily available but not utilized in blind algorithms. In this
work we propose to join these benefits by combining cross-power
minimization of second-order source separation with geometric
linear constraints used in adaptive beamforming. We find that the
geometric constraints resolve some of the ambiguities inherent in
the independence criterion such as frequency permutations and
degrees of freedom provided by additional sensors. We demon-
strate the new method in performance comparisons for actual
room recordings of two and three simultaneous acoustic sources.

Index Terms—Cross-power spectra, frequency permutation,
linear constraints, reverberation, source separation.

I. INTRODUCTION

T HE PURPOSE of this work is to merge for the first
time adaptive beamforming [1] with convolutive blind

source separation of broad-band signals (e.g., [2]–[6]). Both
methods are concerned with the problem of optimizing a
multichannel filter structure to improve the signals detected
with a sensor array such a microphone array or an antenna
array. Their goal is to reduce interference of simultaneous
sources by optimizing the spatial selectivity of the filter array.
While the optimization criteria in source separation reduces
interference, adaptive beamforming minimizes signal power
without reducing the beam’s response for a desired source
position. We propose to use the optimization criteria of source
separation while constraining the responses of multiple beams
based on readily available geometric information. More specif-
ically, we introduce the concept ofgeometric source separation
(GSS), which relies on cross-power spectral minimization
(sufficient for nonstationary signals [6], [7]), while assuming
that sources are localized in space. The method will be demon-
strated on the separation of acoustic sources from multiple
microphones in a reverberant environment. Multimicrophone
speech enhancement is useful in a variety of applications such
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as automatic speech recognition, acoustic surveillance, or
hands-free telephony.

The main limitation of beamforming is cross-talk. In beam-
forming the filter coefficients are optimized to produce a spatial
pattern with a dominant response for the location of interest.
Adaptive beamforming shapes the filter coefficients such that
the response is minimized for the positions of interfering sig-
nals. In multipath or reverberant environments, however, the in-
terfering signals may reach the sensor array from many direc-
tions, and so the optimization often alters the response for the re-
gion of interest also [8]. Source separation, in principle, circum-
vents this cross-talk problem as it generates multiple response
pattern jointly optimized to give independent outputs.

The main limitation of source separation is the existence of
ambiguities in the independence criterion. Robustness has been
limited in the past due to frequency permutation ambiguities
which can only be resolved by considering different frequency
bands simultaneously [4], [9]. The required polyspectra are hard
to estimate and the resulting algorithms are computationally ex-
pensive [9], [10]. In addition, increasing the number of sensors,
which in principle improves performance, introduces free pa-
rameters that are not fully determined by separation criteria.
Geometric constraints have the potential to resolve some of the
ambiguities of convolutive blind source separation.

In Section II the task of source separation will be presented,
independence criteria will be reviewed, and the concept of GSS
will be introduced. Section III outlines how geometric informa-
tion can be expressed through linear constraints, and interprets
the results of source separation as geometric beam patterns. We
will review the ambiguities of the independence criteria in Sec-
tion IV and discuss the algorithm design options for GSS in
Section V. Finally, in Section VI we will present specific im-
plementation of GSS and experimental results on actual room
recordings.

II. CONVOLUTIVE SOURCESEPARATION

A. Separation Problem

Consider uncorrelated sources, , originating
from different spatial locations and sensors detecting
signals . In a multipath environment, each source
couples with sensorthrough a linear transfer function ,
such that . Using matrix
notation and denoting the convolutions bywe can write this
briefly as , or after applying the discrete time
Fourier transform

(1)
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The aim of convolutive source separation is to find filters
that invert the effect of the convolutive mixing

by producing recovered signals such that

(2)

corresponds to the original sources up to a permutation and
scaling. That is

(3)

where represents an arbitrary permutation matrix and
an arbitrary diagonal scaling matrix per frequency. Our nota-
tion implies that we are only considering finite impulse response
(FIR) filters for separation. Conditions on invertibility of
in the context of convolutive blind source separation are dis-
cussed in [11].

B. Blind Separation Criteria

Different criteria for convolutive separation have been pro-
posed [2]–[7], [12]. All criteria can be derived from the assump-
tion of statistical independence of the unknown signals. In fact,
typically only pairwise independence of the recovered signals
is used. Pairwise independence implies that all cross-moments
factor, giving us a number of necessary conditions for the recov-
ered signals

(4)

Convolutive separation requires that these conditions be sat-
isfied for multiple delays , corresponding to the delays of the
filter taps of . For stationary signals, multiple , i.e.,
higher-order criteria, are required [2]–[4]. For nonstationary sig-
nals, multiple can be used and multiple decorrelation, i.e.,

, is sufficient [6], [7], [13].

C. From Blind to Geometric Source Separation

Multiple decorrelation can be implemented as cross-power
minimization to reduce off-diagonal elements of

(5)

for multiple times . In [6] this is implemented in the frequency
domain by diagonalizing cross-power spectra .

Note that from the perspective of beamforming, the filter co-
efficients in each row of rep-
resent a different geometric beam pattern (see Section III-B).
The advantage of multiple outputs, , is that one
can overcome cross-talk problems of simultaneous sources by
jointly optimizing multiple beams to capture each source, while
reducing correlation between their outputs.

In contrast, adaptive beamforming relies mostly on a power
criterion for a single output , i.e., a diagonal term of

. (Cross-power has been used primarily in the context
of eigen-analysis which differs from source separation as will
be discussed in Section IV-D.) Sometimes power is minimized

such as in noise or sidelobe canceling, which aims to adap-
tively minimize the response to interfering signals [1]. Some-
times power is maximized such as in matched-filter approaches
that seek to maximize the response of interest [14]. With simul-
taneous sources, however, these one-channel power criteria have
a serious crosstalk or leakage problem especially in reverberant
environments [8].

The advantage of beamforming over source separation lies
in its use of geometric information. Information such as sensor
positioning or source location is often readily available and can
be used to design optimal array responses. In adaptive beam-
forming it is used to maintain desired geometric response pat-
terns by constraining the filter coefficients during adaptation
[15], [1].

We propose to combine blind source separation and geo-
metric beamforming by minimizing cross-power spectra for
multiple , while enforcing geometric constraints used in
conventional adaptive beamforming. Geometric information
incorporated as constraints or regularizations can, in addition to
maintaining desired beam shapes, also reduce the ambiguities
of blind separation which will be described in Section IV.

III. GEOMETRIC INFORMATION

A. Linear Constraints

In conventional geometric and adaptive beamforming, infor-
mation such as sensor position and source location is often uti-
lized (for a review see [1]). We want to emphasize that geo-
metric assumptions can be incorporated and implemented as
linear constraints to the filter coefficients. In a multiple sidelobe
canceler (MSC), for example, the response of one of the sen-
sors, say sensors, is kept constant, which can be expressed as

. The elements of the column vector
are the filter to be applied to each sensor, andis the th

column of the identity matrix. Rather than constraining a sensor,
one can also constrain the response of a beamformer for a partic-
ular orientation. To see that let us introduce the concept of the
array response. If the location and response characteristics of
each sensor are known, one can compute the free-field response
of a set of sensor and associated beamforming filters . For
position , the phase and magnitude response is given by

(6)

where represents the phase and magnitude re-
sponse of the sensors for a source located at.

Constraining the response to a particular orientation
is simply expressed by the linear constraint,

. This concept is used in the linearly
constrained minimum variance (LCMV) algorithm and is also
the underlying idea for the generalized sidelobe canceler [15],
[16]. To obtain a robust beam, it has also been suggested to
require a smooth response around a desired orientation. This
again can be implemented by constraining the derivative

To summarize, all these conditions, or a combination of them,
can be expressed as linear constraints on .
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B. Beam Patterns

For a linear array with omnidirectional sensors and a far-field
source (much beyond the ratio of array aperture squared to the
wavelength of interest) the sensor response depends approxi-
mately only on the angle, , between the source and the
linear array

(7)

where are the sensor position of the linear
array and is the wave propagation speed.

The matrix used in source separation produces
output signals. Theth output signal is produced by the FIR
filters in , the th row of . In the beamforming lit-
erature, each of these sets ofFIR filters is said to produce
a beam or beam pattern. Each beam pattern can be viewed by
displaying magnitude response as a function of two variables,
frequency, , and incident angle on the array,. Therefore, by
plotting the quantity

(8)

we obtain a convenient way to visualize the spatial and fre-
quency response of a given beam, . We will use this to give
a geometric interpretation to the resulting beam patterns in the
rows of and to compare the results of different separation
and beamforming algorithms.

IV. A MBIGUITIES OF THE INDEPENDENCECRITERIA FOR

CONVOLUTIVE SOURCESEPARATION

In this section we discuss some of the ambiguities of the in-
dependence criteria used in convolutive blind source separation.
These ambiguities highlight the need to constrain the filter co-
efficients by introducing geometric information. For a quicker
development the reader may directly skip to the description of
the new algorithms and performance results Sections V and VI.

A. Scaling and Permutation

The independence criterion (4) has an ambiguity in terms of
permutation and scaling; hence, source separation does not aim
to identify directly and limits itself to recovered signals

as in (3). The scaling ambiguity applies to each frequency
bin, resulting in a arbitrary convolution of each source signal.
This reflects the fact that any convolved versions of indepen-
dent signals remain independent. It is not the goal of source
separation nor beamforming to solve this blind deconvolution
problem. Furthermore, when defining a frequency-domain in-
dependence criterion such as

(9)

there is a permutation ambiguity per frequency for all orders
. The criteria (9) are equally well satisfied with arbitrary

scaling and assignment of indices to the recovered signals,
i.e.,

(10)

where is now an arbitrary permutation matrix which could
be different foreach frequency. As a result, contributions of a
given source may not be assigned consistently to a single recov-
ered signal for different frequency bins. The problem is more
severe with an increasing number of sensors as the number of
possible permutations increases.

This problem has often been considered an artifact of the
frequency-domain formulation of an separation criterion, since
there the separation task is decoupled into an individual separa-
tion tasks for each frequency bin. We will show in the Appendix,
however, that for this ambiguity also applies to
the time-domain independence criteria (4). Even for higher or-
ders we will demonstrate through numerical simulations in the
Appendix that time-domain criteria do not necessarily guarantee
correct permutations.

B. Approaches to Overcome Permutation Ambiguity

Some source separation work in the past has simply ignored
the problem. Others have proposed to exploit the continuity in
the spectra of the recovered signals [17], or the co-modulation
of different frequency bins [10]. A rigorous way of capturing
these statistical properties of multiple frequency contributions
are polyspectra [4], [9]. However, in practice, it is hard to obtain
robust statistics at multiple frequencies, in particular for nonsta-
tionary signals such as speech. In addition, the algorithms that
consider combinations of frequencies are by nature computa-
tionally very demanding [4], [10]. Smoothness constraints on
the filter coefficients in the frequency domain have also been
proposed [18], [6]. This is equivalent to constraining the length
of the filter as compared to the size of the analysis window.
However, this limitation on the filter size may not always be
reasonable as rather long filters are required in strongly rever-
berant environments [19].

C. Ambiguity Due to Additional Sensors

In theory only sensors are needed to separate
sources, or to put it differently, sensors are needed to place

zeros. In practice, however, one may want to use more
sensors to improve the performance of a real system.
If we ignore temporarily the permutation and scaling ambiguity,
(10) reads , where represents the identity
matrix. This suggests that for a given , the independence
criteria leave us with a -dimensional linear space of
equivalent solutions for . In effect, this indicates that there
are additional degrees of freedom to shape the beam patterns
represented by filters .

D. Subspace Analysis to Reduce Degrees of Freedom

The conventional approach for reducing the degrees of
freedom in a linear system is subspace analysis, which will,
given sufficient signal power, identify the -dimensional ori-
gins of the -dimensional sensor readings. Subspace analysis
produces a transformation matrix , such that

(11)

where is a diagonal matrix, and the transformations are
constrained to be orthogonal, . The diagonal



PARRA AND ALVINO: MERGING CONVOLUTIVE SOURCE SEPARATION WITH GEOMETRIC BEAMFORMING 355

Fig. 1. Beam patterns generated by first two principal components, i.e.,
w = u , andw = u in (8). Two sources were located at 0and�40 . See
Section VI-A for details on experimental conditions.

elements represent the eigenvalues corresponding to the column
vectors in . The matrix also corresponds, in approx-
imation, to the power spectrum of the variables,1

(12)

Conventionally, it is assumed that the eigenvectors corre-
sponding to the maximal eigenvalues, the principal components,
span the signal subspace while the eigenvectors with small
eigenvalues correspond to the noise subspace [20]–[22]. That
is, the first components of with largest powers contain
the main signals, while the remaining contain mostly sensor
noise and other low power signals. For example, the maximum
power criterion used for matched-filtering converges to the first
principal component —the first column in —with
maximum eigenvalue. The matched-filter design uses that
principal component to generate a beam that points into the
direction of maximum power, [14].

Fig. 1 displays in gray scale, the values of (8) for the beam
patterns produced by the first two principal component, where
white and black correspond to the highest and lowest values of
the response magnitude . The first principal component
filter is shown on the left and the second is shown on the right.
The sensors were in a linear array of four microphones, with a
total array aperture of 70 cm. The sources were at incident an-
gles of 0 and 40 to the array. Note that the response of the
principal component filters is high for the orientations with high
signal powers. Note also that in the presence of multiple sources
the maximum power does not always correspond to the source of
interest or even the same source for all frequency bands. Further-
more, due to the orthogonality assumption, second and higher
components do not necessarily have a one-to-one correspon-
dence with the sources.

For instantaneous mixtures, the separation algorithm is often
applied only to the first components. Though a similar ap-
proach can be taken in the convolutive case [23], our current
experiments indicate that the signal of interest is often found
also in higher components ( ). We have so far
not been able to demonstrate that subspace analysis can give an
additional gain over constraining the filter coefficients based on
geometric assumptions.

1The factorizationR (!) � U(!)R (!)U (!), with R (�) =
E[z(t)z (t + �)] is approximately correct when the filter lengthU(�) is
small compared to the analysis window.

V. GEOMETRIC SOURCE SEPARATION—ALGORITHMIC

DESIGN OPTIONS

There are a number of options for the implementation of the
geometric source separation concept. Different choices can lead
to different algorithms. Before we report some results on dif-
ferent implementations of the basic idea we want to discuss
some of these options.

A. Frequency versus Time Domain

Diagonalization of (5) can be expressed in the time domain
as well as in the frequency domain. For efficiency, we suggest
implementing the algorithm in the frequency domain by using
cross-power spectra as discussed in the following
section. Additionally, in the frequency domain the filter param-
eters are well decoupled; as a result, power normalization per
frequency can speed up convergence considerably [24].

B. Cross-Power Estimation

The cross-power spectra must be estimated from the data. In
an on-line algorithm one may compute a running estimate of

directly from the outputs as in [25]. If the filter
coefficients change rapidly, however, such an estimate will lag
behind. In the past we have used the approximate factorization

(13)

which facilitates an efficient on-line algorithm by computing the
output cross-correlations using the most recent and a cur-
rent estimate of the input cross-power spectra [6],
[24]. Factorization (13) is based on the approximation of the
linear convolution by the circular convolution. Therefore, it is
only accurate when , where is the filter length and
is the analysis window length. Note also that independent sig-
nals will have vanishing empirical cross-power only for suffi-
ciently long estimation times [26], which may go much beyond
the stationarity time of the signals. On the other hand, also note
that averaging over extended time periods may in effect lead to
stationary estimates, which violates the nonstationarity require-
ment of second-order source separation [6]. This tradeoff has to
be determined based on the statistics of the signals.

C. Optimization Criteria

A criterion and algorithm for simultaneous diagonalization of
over multiple must be chosen. Previously, we had

proposed to minimize the sum of squares of the off-diagonal
elements of [6]

(14)

with the factorization (13), and where refers to the
Frobenius norm, defined as . For faster
convergence using gradient descent, we normalized by the total
input power per frequency with .
In [25] a diagonalization criterion is suggested based on
the coherence function, which can be written concisely2 as

. The diagonal elements of

2In the remainder of this paragraph we abbreviateR (t; !) = R and omit
the sums overt and! for brevity.
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Fig. 2. Responses for data independent beamforming. Results for algorithms
delay-sum and LS-C2 are shown. The dB values here and in the following
beam plots represent the SIR obtained for separation of two sources. All beam
plots shown in this paper assume the same four-microphone configuration
corresponding to the recording array.

the coherence function are normalized to 1, which results
in a fast converging gradient algorithm. In [27] a diag-
onalization criterion based on the Hadamard inequality,

was proposed. A similar diagonal-
ization criterion, based on the maximum likelihood (ML) cost
assuming multivariate Gaussian distributions, was presented
in [28], . All of
these criteria are to be minimized with respect to the filter
coefficients . Their lower bound of zero is obtained if and
only if is diagonal.

D. Geometric Constraints

We will assume, without loss of generality, that the
sources we are trying to recover are localized at angles

and at sufficient distance for a far-field
approximation to apply. Following Section III, the response
of the filters in for the directions in is given by

, where .
We will consider linear constraints such as

C1: (15)

or,

C2: (16)

Constraint (15) restricts each filter —the th row vector
in —to have unit response in direction. Constraint (16)
enforces in addition that each filter has zero response in the di-
rection of interfering signals .

Note that the conventional delay-sum beamformer, given by
, satisfies constraint C1 strictly. Exam-

ples are shown on the top two plots of Fig. 2. The top left

and top right plots are the magnitude response, , with
steering angles and . Condition C2 re-
quires that is invertible for the given set of angles.
However, this is not always possible. A data independent filter
structure that guarantees condition C2 can be computed with
a least squares approach and is given by the pseudo-inverse
of , or including a regularization term to com-
pensate for noninvertibility; the solution is given by

. We denote this solution
by LS-C2. The bottom two plots of Fig. 2 show the resulting
beam patterns. At the frequencies where the grating lobes3 of
a beam pattern coincide with the interfering angles,
is not invertible (e.g., Fig. 2, bottom at about 5.6 kHz). It is
therefore not reasonable to try to enforce C2 as a hard con-
straint. Rather, as we confirmed in our experiments, it is ben-
eficial to regularize the inverse problem by adding a penalty
term of the form to the op-
timization criterion (14). Note also that power or cross-power
minimization will minimize the response at the interference an-
gles. This will lead to an equivalent singularity at those frequen-
cies. It is therefore beneficial to enforce constraint (15) also
only as a regularization by using a penalty term of the form

.

VI. EXPERIMENTAL RESULTS

Now we present a number of different instantiations of
geometric source separation on recorded audio data. We
present details of the recordings and data in Section VI-A.
In Sections VI-B and VI-C, we will describe the specific
algorithms. In Section VI-D, the resulting beam patterns will be
discussed and in Section VI-E, a more complete performance
evaluation will be given in terms of signal-to-interference ratio
(SIR) for two and three simultaneous acoustic sources and
various microphone configurations. We defer the details of
source localization to Section VI-F.

A. Data and Methods

All recordings used a linear array of cardioid condenser mi-
crophones with an aperture of 70 cm in moderately reverberant
rooms ( ms). The number of microphones was varied
from two to eight. The angles of the multiple sources were
identified based on the response profiles using eight sensors
as outlined in Section VI-F. All source locations were reliably
identified from the data despite the fact that one source is lo-
cated outside the recording room; its radiation characteristic is
rather diffuse as the signal is radiating through the open door
of the room. Fig. 3 shows an overhead view of the experiment
setups.

The data was stored and processed at 16 kHz sampling rate
and a filter length of was mostly sufficient in these
experiments. We introduced a delay of in all filters, which
can be simply implemented by introducing a delay in the defini-
tion of the array vectors . Since the resulting filters are rather
compact around that central delay, was sufficient to
guarantee an accurate approximation in (13).

3Periodic replication of the main lobe due to limited spatial sampling.
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Fig. 3. Overhead views of experimental set-up for two-source recordings (top)
and three-source recordings (bottom). Numbered circles indicate various source
positions.

B. Geometrically Initialized Source Separation

Many researchers have obtained reasonable separation
results despite ignoring the permutation problem. We argue that
this is due to the specific initialization within an optimization
procedure. When constraints (9) are expressed as an opti-
mization criterion such as (14), the permutation ambiguity is
represented by a set of optimal filters of which only one corre-
sponds to the correct permutation. Since solutions are typically
close for neighboring frequencies, close-by initial conditions
typically converge to solutions with consistent permutations.
Therefore, consistent permutations are expected within large
frequency bands, and proper initialization of the filter structure
may adequately address the permutation problem.

We optimized criterion (14) with different initializations. In
all cases we constrained , for all , to normalize
the scale during optimization. We obtained the best perfor-
mance when initializing with the filter structure corresponding
to a delay-sum beamformer pointing to the individual sources.
Using the orientations , we initialized the filter coefficients
of the th beam with

I1: (17)

Example beam patterns corresponding to this initialization are
shown in Fig. 2 (top). Minimization of (14) with initialization
I1 will be referred to as GSS-I1. Alternatively, in GSS-I2 we
initialized with beams that place zeros at all orientations of in-
terfering sources. The initialization filters with minimum norm

Fig. 4. Resulting responses of geometrically initialized source separation.
Results of initializations with delay-sum beamformer (GSS-I1), minima at
interferences (GSS-I2), and unit filter (BSS) are shown.

that satisfy those constraints can be computed explicitly with a
least-squares (LS) approach resulting in

I2: (18)

where indicates the Hermitian transpose of the pseudo-in-
verse, and is the th column of . In Fig. 4, the re-
sulting response patterns are shown for one example of two si-
multaneous sources and angles 0and 40 . For comparison,
we report also the results obtained with a unit filter initializa-
tion, , which is the initialization conventionally used
in blind source separation, and corresponds to our previous blind
source separation (BSS) algorithm [6]. In the performance com-
parison of Section VI-E we will see that the algorithm GSS-I1
currently gives the best SIR, while the conventional unit filter
initialization is not robust across different sources and sensor
configurations.

C. Geometrically Constrained Source Separation

In an online implementation of a separation algorithm, the
concept of introducing geometric information through an ini-
tialization is not feasible as the source positions in the envi-
ronment may be changing dynamically. It is more realistic to
regularize the filters with the geometric information through a
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Fig. 5. Responses for geometrically constrained source separation.
Algorithms GSS-C1 and GSS-C2 minimize (19) with constraints C1 and C2
respectively.

penalty term. We have further addressed the problem of nonin-
vertibility discussed in Section V-D by introducing a frequency
dependent weighting of the penalty term. The idea is to elimi-
nate the constraints from the optimization for those frequency
bands in which is not invertible. A rather straightfor-
ward metric for invertibility is the condition number. We there-
fore weight the penalty term with the inverse of the condition
number of , i.e., , which is zero
when is not invertible and remains bounded otherwise,
i.e., . The total cost function including frequency
dependent weighting of the geometric penalty term is given by

(19)

where is given by (14), and is scaling constant, chosen
to be , such that the two terms are of the same order of mag-
nitude. Optimization of (19) is referred to as algorithm GSS-C1
or GSS-C2 depending on which penalty term is used. The ex-
ample of Fig. 5 shows that in algorithm GSS-C1, the penalty
term maintains the response of filtersin orientation . In
algorithm GSS-C2 the penalty term minimizes in addition
the response for the orientations of the interfering sources.

All GSS algorithms reported here minimize the cost function
using conventional gradient descent for complex variables [29].
The gradient of the cost function and two regularizers are given
with by

Fig. 6. Responses for multiple sidelobe canceling (MSC) and linearly
constrained minimum variance (LCMV).

In all experiments the cross-power spectra are es-
timated at five time instances with a time window of about 3 s
each, such that a total of about 15 s of data is analyzed. We iterate
the gradient descent algorithm 400 to 1600 times depending on
the number of microphones used.

D. Discussion of Resulting Beam Patterns

First we would like to qualitatively discuss the resulting re-
sponse patterns of Figs. 4 and 5, and compare them with the re-
sults of some conventional beamforming algorithms as shown
in Fig. 6.

Linearly constrained minimum variance (LCMV) minimizes
power at all times while strictly constraining the response
for a known source location [15]. In this specific LCMV
algorithm we have in addition implemented weight decay
to avoid spurious maxima in orientations from which no
power is detected [30]. The weights are decayed toward the
delay-sum beamformer with a regularization term of the form,

. Multiple sidelobe canceling (MSC)
uses knowledge of silent periods of each source during which it
minimizes power. For the MSC algorithm, the speech segments
were labeled by hand. It represents a best-case result which can
be obtained only using this additional information and is given
here only as a reference.

Figs. 4–6 show in all cases that the main lobe and zeros are
at the desired angles consistently across frequency. Without
geometric initializations or constraints that is not necessarily
the case (see Fig. 1). Algorithms BSS, GSS-I2, and MSC
mainly place a zero at the angles of interfering sources. Their
response in other directions is not further specified. It is there-
fore possible that side zeros cancel the sources at bands that are
important for the application. The results for GSS-I1, GSS-C1,
GSS-C2 exhibit in addition a main lobe in the direction of the
corresponding source. For conflicting frequency bands, where
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Fig. 7. Performance comparison of the proposed algorithms and geometric
beamforming algorithms.

a grating lobe coincides with the location of an interfering
source, multiple cross-power minimization cancels the main
lobe for GSS-I1, while conserving it somewhat for GSS-C1
and GSS-C2, due to the geometric penalty. In LCMV, the
power minimization and the strict constraints lead to some
discontinuities in the response. In particular, the constraint
and power minimization are contradictory criteria when signal
power originates from the same direction as the unit-gain
constraint. Qualitatively, the results for the data independent
LS-C2 algorithm seem to capture both main lobe and zeros in
the correct locations. However, its performance in terms of SIR
is inferior to the data-adaptive algorithms.

E. Performance Comparison

A systematic performance evaluation of the algorithms for the
case of two sources is presented in Fig. 7. We varied source loca-
tions and the number of sensors. Grayscale represents SIR per-
formance in dB for the different algorithms. SIR performance,
averaged over all positions and number of sensors is given next
to the algorithm name. An array with aperture of 70 cm and a
variable number of sensors was used (two to eight microphones
varied on the horizontal axis). Two sources are located at vari-
able angles. The results are sorted by their relative angle along
the vertical axis [12, 18 , 19 , 25 , 33 , 37 , 38 , 41 , 50
which correspond, in Fig. 3 (top), to locations pairs (1,2), (3,4),
(1,5), (1,6), (1,7), (1,8), (1,9), (1,10), and (11,12), respectively.]

The top row of Fig. 7 shows the results for some known
beamforming algorithms (delay-sum, LS-C2, LCMV). The
center row represents the results for unconstrained multiple
cross-power minimization with different initializations in-
cluding the geometric initialization (BSS, GSS-I2, GSS-I1).
The bottom row shows the results for the geometrically con-
strained separation algorithms (GSS-C1′, GSS-C1, GSS-C2).
Algorithm GSS-C1′ is the same as GSS-C1 only with constant
penalty term . Within each row, the algorithms are sorted by
average performance. Comparison of the results for GSS-C1′
and GSS-C1 show the advantage of the frequency dependent
weighting of the penalty term. Due to the limited angular

Fig. 8. Performance for the separation of three sources using eight sensors.
SIR improvement are averaged over three configurations with angles�78 ,
�41 , 0 ; �60 , 0 , 60 ; and�43 , 0 , 36 . The initial SIR is in average
about�3 dB.

resolution, all algorithms perform poorly when the sources are
too close.

Fig. 8 reports the performance of separating three sources,
two speech sources and babble noise, using eight microphones.
As indicated in Section IV-A, the permutation problem becomes
worse as the number of sources increases. To our knowledge
this is the first report of successful source separation for more
than two sources from simultaneous real room recordings. The
performance ranking mostly mirrors the results obtained for the
separation of two sources.

F. Source Localization

We used a source localization method based on subspace
analysis similar to what is used in the MUSIC algorithm [31].
Orthogonality of the eigenvectors guarantees that minor com-
ponents, , do not capture high power
signals covered by the principal components. Therefore we use
minima in the response of minor components to identify source
locations . To obtain a more robust angle estimate we combine
the response for all frequencies

(20)

Source locations can be identified in the minima of this response
profile as shown in Fig. 9. We defined source locations as the
angles with the smallest values of within a window of 7 .

This profile reflects the spatial distribution of the main power
observed by the array, and will depend on the radiation char-
acteristic and environment of the sources. The width of these
minima gives us an indication of the adequacy of the localiza-
tion assumptions used in this work. It is to be compared to the
achievable spatial resolution for a given aperture and frequen-
cies of interest. A simple aggregated metric for the spatial reso-
lution of an array is the response profile for a delay-sum beam-
former, i.e., . In Fig. 9,
one can verify that the width of the extrema are in the same
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Fig. 9. Top: Response profile (20) of the six smallest eigenvectors for the same
signals as shown Fig. 1. The source location can readily be identified. Bottom:
Response profile for two delay-sum beamformer pointing to the corresponding
angles. The vertical axis has an arbitrary shift and scale.

range, indicating that the sources are localized judged by the
resolution of this array.

VII. CONCLUSION

We have proposed a method that, for the first time, combines
convolutive blind source separation with adaptive beamforming.
The key assumption of this work is that the sources are localized,
at least up to the spatial resolution of a given array. This allows
us to formulate geometric constraints on the filter coefficients,
much as is done in conventional beamforming. A number of dif-
ferent geometric constraints can be introduced, leading to a class
of algorithms we called geometric source separation (GSS). The
performance of these GSS algorithms are superior to that of con-
ventional beamforming algorithms. The geometric information
was introduced into the algorithm as initialization of the filter
parameters and as regularizations using penalty terms. Neither
approach is specifically limited to the second-order criterion we
used; both can be equally well combined with other higher-order
criteria. In this work we have restricted ourselves to linear ar-
rays and source locations specified by azimuth. The discussion
extends in a straightforward manner to the more general case
of arbitrary sensor arrangements and full 3-dimensional source
localization. Though our algorithms rely on specific source lo-
cations, they are still blind algorithms since the source locations
have been identified from the data.

APPENDIX

A. Permutation Ambiguity in Second-Order Criteria

Permutation ambiguity affects not only frequency-domain in-
dependence criteria but also the corresponding time-domain cri-
teria. Here we show analytically that for , the
time-domain criterion in (4) is invariant to frequency permu-
tation for wide-sense stationary (w.s.s.) signals. Permutations
convert cross-correlation terms into auto-correlation terms. We
then use the well-known fact that the frequency components of
the autocorrelation function are independent. A similar argu-
ment can be made for nonstationary signals when summing (4)
over .

To understand the effect of frequency permutation we express
the signals in terms of their -point frequency representation,

, whereby

(21)

(22)

provided that both and are zero mean and mutually
independent. The purpose of this analysis is to identify the ef-
fect of a singly permuted frequency, , on the second-order
statistic. Under permutation of frequency bin, (22) becomes

(23)

The first and fourth terms of (23) are still zero due to the as-
sumption of independence. The second and third terms of (23)
are equal to zero for w.s.s. signals, since

[32]. This shows that criterion (4) is insensi-
tive to frequency permutation, making it an inadequate penalty
term to assign the signal consistently across frequencies to the
appropriate recovered signal.

B. Effect of Frequency Permutation on Time-Domain
Independence Criteria

Here we give numerical evidence that some higher-order
time-domain criteria are also adversely affected by frequency
permutation. To measure the accuracy of assumption (4) for
signals we define

(24)
For an incorrectly permuted signal and a correctly sepa-
rated signal we report the relative amplitudes for specific
values of and

(25)

as a function of the percentage of incorrectly permuted fre-
quency bins in Fig. 10. For independent signals and perfect esti-
mation, the denominator in (25) vanishes. Nonvanishing values



PARRA AND ALVINO: MERGING CONVOLUTIVE SOURCE SEPARATION WITH GEOMETRIC BEAMFORMING 361

Fig. 10. Moment and cross-moment terms versus percentage of incorrectly
permuted frequency bins. The solid lines illustrate the moments of the
incorrectly permuted signals. The dashed lines illustrate the cross-moments.

correspond to the estimation error, and can be used as a refer-
ence value for the sample averages of these quantities.

In Fig. 10, the solid lines illustrate the moments of the incor-
rectly permuted signals. The dashed lines illustrate the cross-
moments. Both are measured in decibels over the correctly per-
muted cross-moments as is shown in (25). Each row represents
different signal pairs. The top row corresponds to two speech
signals, the center row corresponds to two different music sig-
nals, and bottom row corresponds to music and speech. All sig-
nals were 7 s long and sampled at 16 kHz. They were normalized
to unit variance and zero mean. We summed over 2048 taps.

As show in the previous section, the time-domain criterion (4)
is invariant with respect to permutations of individual frequency
bins for the case . This is confirmed numerically and
shown in the left column of Fig. 10. Therefore, second-order
criteria can not be used to find filters with correct permutations.
Fig. 10 also demonstrates numerically that for ,
and , the time-domain criterion (4) is not robust
to permutations. For some signals (top row), the higher-order
cross-moments are in fact minimized by the correct permuta-
tions. However, for some other signals (middle and bottom row)
the higher-order cross-moments are minimal for incorrect per-
mutations. This simulation indicates that third- and fourth-order
time-domain criteria are not robust to the permutation problem,
as the criteria are limited by estimation accuracy, in particular
for nonstationary signals.
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