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Geometric Source Separation: Merging Convolutive
Source Separation With Geometric Beamforming

Lucas C. Parra and Christopher V. Alvino

Abstract—Convolutive blind source separation and adaptive as automatic speech recognition, acoustic surveillance, or
beamforming have a similar goal—extracting a source of interest hands-free telephony.
(or multiple sources) while reducing undesired interferences. A The main limitation of beamforming is cross-talk. In beam-
benefit of source separation is that it overcomes the conventional . . .y .S .
cross-talk or leakage problem of adaptive beamforming. Beam- forming th_e filter cogfﬂments are optimized to pro_ducea_spanal
forming on the other hand exploits geometric information whichis ~Pattern with a dominant response for the location of interest.
often readily available but not utilized in blind algorithms. In this ~ Adaptive beamforming shapes the filter coefficients such that
work we propose to join these benefits by combining cross-power the response is minimized for the positions of interfering sig-
minimization of second-order source separation with geometric 55 |y multipath or reverberant environments, however, the in-
linear constraints used in adaptive beamforming. We find that the . . ; T
geometric constraints resolve some of the ambiguities inherent in t_erferlng signals ma_y reac_:h the sensor array from many direc-
the independence criterion such as frequency permutations and tIOI’]S, and SO the Opt|m|zat|0n Often altel’S the response fOI‘ the re-
degrees of freedom provided by additional sensors. We demon- gion of interest also [8]. Source separation, in principle, circum-
strate the new method in performance comparisons for actual vents this cross-talk problem as it generates multiple response
room recordings of two and three simultaneous acoustic sources. pattern jointly optimized to give independent outputs.

Index Terms—Cross-power spectra, frequency permutation,  The main limitation of source separation is the existence of

linear constraints, reverberation, source separation. ambiguities in the independence criterion. Robustness has been
limited in the past due to frequency permutation ambiguities
I. INTRODUCTION which can only be resolved by considering different frequency

] ] ~ bands simultaneously [4], [9]. The required polyspectra are hard

T HE PURPOSE of this work is to merge for the firstg estimate and the resulting algorithms are computationally ex-

time adaptive beamforming [1] with convolutive blindpensive [9], [10]. In addition, increasing the number of sensors,
source separation of broad-band signals (e.g., [2]-[6]). Bajhich in principle improves performance, introduces free pa-
methods are concerned with the problem of optimizing @meters that are not fully determined by separation criteria.
multichannel filter structure to improve the signals detectfeometric constraints have the potential to resolve some of the
with a sensor array such a microphone array or an antergigpiguities of convolutive blind source separation.
array. Their goal is to reduce interference of simultaneous| Section I the task of source separation will be presented,
sources by optimizing the spatial selectivity of the filter arrayngependence criteria will be reviewed, and the concept of GSS
While the optimization criteria in source separation reducgg| pe introduced. Section Il outlines how geometric informa-
interference, adaptive beamforming minimizes signal powghn can be expressed through linear constraints, and interprets
without reducing the beam'’s response for a desired SOURER results of source separation as geometric beam patterns. We
position. We propose to use the optimization criteria of sourg@)| review the ambiguities of the independence criteria in Sec-
separation while constraining the responses of multiple beagps, |v and discuss the algorithm design options for GSS in
based on readily available geometric information. More speci&action V. Finally, in Section VI we will present specific im-

ically, we introduce the concept geometric source separationplementation of GSS and experimental results on actual room
(GSS), which relies on cross-power spectral minimizatiogcordings.

(sufficient for nonstationary signals [6], [7]), while assuming
that sources are localized in space. The method will be demon-
strated on the separation of acoustic sources from multiple
microphones in a reverberant environment. Multimicrophorfe Separation Problem

speech enhancement is useful in a variety of applications sucltonsiderM uncorrelated sources(t) € R, originating
from different spatial locations andf > A sensors detecting

. N . . )
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The aim of convolutive source separation is to find filtersuch as in noise or sidelobe canceling, which aims to adap-
W;;(7) that invert the effect of the convolutive mixind(7) tively minimize the response to interfering signals [1]. Some-

by producing recovered signa¥$¢) such that times power is maximized such as in matched-filter approaches
that seek to maximize the response of interest [14]. With simul-
y(w) = W(w)x(w) (2) taneous sources, however, these one-channel power criteria have

a serious crosstalk or leakage problem especially in reverberant
corresponds to the original sourcg$) up to a permutation and environments [8].

scaling. That is The advantage of beamforming over source separation lies
in its use of geometric information. Information such as sensor
y(w) = W(w)A(w)s(w) = PS(w)s(w) (3) positioning or source location is often readily available and can

be used to design optimal array responses. In adaptive beam-
whereP represents an arbitrary permutation matrix &{d) forming it is used to maintain desired geometric response pat-
an arbitrary diagonal scaling matrix per frequency. Our notterns by constraining the filter coefficients during adaptation
tion implies that we are only considering finite impulse respon$&5], [1].
(FIR) filters for separation. Conditions on invertibility &f(w) We propose to combine blind source separation and geo-
in the context of convolutive blind source separation are digetric beamforming by minimizing cross-power spectra for

cussed in [11]. multiple ¢, while enforcing geometric constraints used in
conventional adaptive beamforming. Geometric information
B. Blind Separation Criteria incorporated as constraints or regularizations can, in addition to

. Lo . . aintaining desired beam shapes, also reduce the ambiguities
Different criteria for convolutiv ration hav n pro-,, . . ) ) e . .
erent criteria for convolutive separation have been p (g; blind separation which will be described in Section IV.

posed [2]-[7], [12]. All criteria can be derived from the assump-
tion of statistical independence of the unknown signals. In fact,
typically only pairwise independence of the recovered signals
is used. Pairwise independence implies that all cross-momeftsLinear Constraints

factor, giving us a number of necessary conditions for the recov-j, conventional geometric and adaptive beamforming, infor-

I1l. GEOMETRIC INFORMATION

ered signals mation such as sensor position and source location is often uti-
o lized (for a review see [1]). We want to emphasize that geo-
Vi, n,m, 7,0 # metric assumptions can be incorporated and implemented as

Elyi(tyylt+7)] =E[fIE [y]'(t+7)]. (4) linear constraints to the filter coefficients. In a multiple sidelobe
canceler (MSC), for example, the response of one of the sen-
Convolutive separation requires that these conditions be sstrs, say sensoys is kept constant, which can be expressed as
isfied for multiple delays-, corresponding to the delays of thew! (w)e; = const. The elements of the column vecw(w) €
filter taps of W (7). For stationary signals, multiple, m, i.e., C* are the filter to be applied to each sensor, api theith
higher-order criteria, are required [2]-[4]. For nonstationary sigelumn of the identity matrix. Rather than constraining a sensor,
nals, multiplet can be used and multiple decorrelation, i.egne can also constrain the response of a beamformer for a patrtic-

n = m = 1, is sufficient [6], [7], [13]. ular orientation. To see that let us introduce the concept of the
array response. If the location and response characteristics of
C. From Blind to Geometric Source Separation each sensor are known, one can compute the free-field response

wefa set of sensor and associated beamforming filtes). For
positionq, the phase and magnitude response is given by

r(w, q) = w(w)d(w, q) (6)

whered(w, q) € C" represents the phase and magnitude re-
for multiple timest. In [6] this is implemented in the frequencysponse of théV sensors for a source locatedeat

Multiple decorrelation can be implemented as cross-po
minimization to reduce off-diagonal elements of

Ryy(ta T) =FE [Y(t)yH(t + T)] %)

domain by diagonalizing cross-power sped®a, (¢, w). Constraining the response to a particular orientation
Note that from the perspective of beamforming, the filter cas simply expressed by the linear constrainfw, q) =
efficients in each row oW (w) = [w1(w), ..., wa(w)]? rep- wH(w)d(w, q) = const. This concept is used in the linearly

resent a different geometric beam pattern (see Section IlI-Bpnstrained minimum variance (LCMV) algorithm and is also
The advantage of multiple outputg(t) € R, is that one the underlying idea for the generalized sidelobe canceler [15],
can overcome cross-talk problems of simultaneous sources[b§]. To obtain a robust beam, it has also been suggested to
jointly optimizing multiple beams to capture each source, whilequire a smooth response around a desired orientation. This
reducing correlation between their outputs. again can be implemented by constraining the derivative

In contrast, adaptive beamforming relies mostly on a power
criterion for a single outpug(t) € R, i.e., a diagonal term of —
Ry (t, w). (Cross-power has been used primarily in the context 0q
of eigen-analysis which differs from source separation as wilb summarize, all these conditions, or a combination of them,
be discussed in Section IV-D.) Sometimes power is minimizen be expressed as linear constraintsviw).

a
r(w,q) = WH(w)a—q d(w, q) =0.
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B. Beam Patterns whereP(w) is now an arbitrary permutation matrix which could

For a linear array with omnidirectional sensors and a far-fieRf different foreach frequencyAs a result, contributions of a
source (much beyond the ratio of array aperture squared to ${¥eN source may not be assigned consistently to a single recov-
wavelength of interest) the sensor response depends apprid signal for different frequency bins. The problem is more

mately only on the angl#), = (q), between the source and the*€Vere with an increasing number of sensors as the number of
linear array ’ ' possible permutations increases.

This problem has often been considered an artifact of the
d(w, q) = d(w, §) = o—i(p/c)wsin() @) frequency-domain formulation of an separation criterion, since
there the separation task is decoupled into an individual separa-
wherep = [pi, ..., py] are the sensor position of the lineafion tasks for each frequency bin:We wiI_I showinthe Ap_pendix,
array and: is the wave propagation speed. how_ever, that forr_z = m = 1 this _am_blgwty also appl_les to
The matrix W(w) used in source separation produdes the tlme-dpmaln independence criteria (4_1). Ev_en for_hlgh_er or-
output signals. Théth output signal is produced by thé FIR ders We.Wlll de.monstrate. thrqug_h numerical S|mu|gt|ons in the
filters in w (w), theith row of W (w). In the beamforming lit- Appendix that tlme—domam criteria do not necessarily guarantee
erature, each of these setsMfFIR filters is said to produce COTect permutations.
a beam or beam pattern. Each beam pattern can be viewed_by . -
displaying magnitude response as a function of two variables, Approaches to Overcome Permutation Ambiguity
frequencyw, and incident angle on the arral, Therefore, by =~ Some source separation work in the past has simply ignored

plotting the quantity the problem. Others have proposed to exploit the continuity in
the spectra of the recovered signals [17], or the co-modulation
|r(w, 8)] = [w (w)d(w, 6)] (8) of different frequency bins [10]. A rigorous way of capturing

these statistical properties of multiple frequency contributions
we obtain a convenient way to visualize the spatial and frare polyspectra [4], [9]. However, in practice, it is hard to obtain
quency response of a given beas!. We will use this to give robust statistics at multiple frequencies, in particular for nonsta-
a geometric interpretation to the resulting beam patterns in thenary signals such as speech. In addition, the algorithms that
rows of W and to compare the results of different separatiatonsider combinations of frequencies are by nature computa-

and beamforming algorithms. tionally very demanding [4], [10]. Smoothness constraints on
the filter coefficients in the frequency domain have also been

IV. AMBIGUITIES OF THE INDEPENDENCECRITERIA FOR proposed [18], [6]. This is equivalent to constraining the length
CONVOLUTIVE SOURCE SEPARATION of the filter as compared to the size of the analysis window.

However, this limitation on the filter size may not always be

In this section we discuss some of the ambiguities of the ifs,5onaple as rather long filters are required in strongly rever-
dependence criteria used in convolutive blind source separati§frant environments [19]

These ambiguities highlight the need to constrain the filter co-
efficients by introducing geometric information. For a quicket, Ambiguity Due to Additional Sensors
development the reader may directly skip to the description of

the new algorithms and performance results Sections V and VI.In theory onIyN. Sensors are needed to sepatafe= N
sources, or to put it differentlyy sensors are needed to place

N — 1 zeros. In practice, however, one may want to use more
sensorgN > M) to improve the performance of a real system.
The independence criterion (4) has an ambiguity in terms gfye ignore temporarily the permutation and scaling ambiguity,
permutation and scaling; hence, source separation does not @) readsW (w)A(w) = I, wherel represents the identity
to identify S(t) directly and limits itself to recovered SignalSmatrix_ This suggests that for a givﬁ(w), the independence
y(t) as in (3). The scaling ambiguity applies to each frequengyiteria leave us with 4V — M)-dimensional linear space of
bin, resulting in a arbitrary convolution of each source signadquivalent solutions foW (w). In effect, this indicates that there

This reflects the fact that any convolved versions of indepefire additional degrees of freedom to shape the beam patterns
dent signals remain independent. It is not the goal of sourggpresented by filtersV (w).

separation nor beamforming to solve this blind deconvolution
problem. Furthermore, when defining a frequency-domain iD. Subspace Analysis to Reduce Degrees of Freedom
dependence criterion such as

A. Scaling and Permutation

The conventional approach for reducing the degrees of
N s m n m freedom in a linear system is subspace analysis, which will,
E [y (0] ()] = Elyf ()] B [y (w)] ©) given sufficient signal power, identify th&/-dimensional ori-

ins of theN-dimensional sensor readings. Subspace analysis

there is a pe_rmgtaﬂon ambiguity per frequgncy for all _Ordeﬁsroduces a transformation matfiX(w), such that
n, m. The criteria (9) are equally well satisfied with arbitrar

scaling and assignment of indicgsj to the recovered signals, Roxc(w) = U(w)A(w) U (w) (11)
ie.,
whereA(w) is a diagonal matrix, and the transformations are
W(WA(w) = P(w)S(w) (10) constrained to be orthogond/,~!(w) = U" (w). The diagonal
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V. GEOMETRIC SOURCE SEPARATION—ALGORITHMIC
DESIGN OPTIONS

There are a number of options for the implementation of the
geometric source separation concept. Different choices can lead
to different algorithms. Before we report some results on dif-
ferent implementations of the basic idea we want to discuss
some of these options.

A. Frequency versus Time Domain

b oo T“:: Diagonalization of (5) can be expressed in the time domain
as well as in the frequency domain. For efficiency, we suggest
Fig. 1. Beam patterns generated by first two principal components, i.gmplementing the algorithm in the frequency domain by using
Senti ;]IVEI’_T;’;’ rEe;‘;”'sno(r?)é);";?i;%L:]rt‘;elic‘;ﬁfﬁg%‘fe‘j dtand—40°. See cross-power spectrRyy (t, w) as discussed in the following
section. Additionally, in the frequency domain the filter param-
s are well decoupled; as a result, power normalization per
requency can speed up convergence considerably [24].

elements represent the eigenvalues corresponding to the col
vectors inU(w). The matrixA(w) also corresponds, in approx-

imation, to the power spectruRR,,,(w) of the variables, B. Cross-Power Estimation

z(w) = U (w)x(w). (12) The cross-power spectra must be estimated from the data. In

an on-line algorithm one may compute a running estimate of

Conyentionally, it_ is as_sumed that the (_eig(_anvectors COMMRr, (¢, w) directly from the outputy (¢) as in [25]. If the filter
sponding to the maximal eigenvalues, the principal componentgefficients change rapidly, however, such an estimate will lag

span the signal subspace while the eigenvectors with smadiind. In the past we have used the approximate factorization
eigenvalues correspond to the noise subspace [20]-[22]. That

is, the first components af(w) with largest powers contain Ryy (t, w) & W(w) R (t, w)WH (W) (13)

the main signals, while the remaining contain mostly sensor . . . . . .

noise and other low power signals. For example, the maximuinich facilitates an efﬁment(_)n—llne algorithm by computing the
power criterion used for matched-filtering converges to the fir@UtPU C.I’OSS—CO:;I’eAatI.OI’lS using the most reddfit,) and a cur-
principal componenty; (w)—the first column inU(w)—with rent estimate of the Input cross-power speﬁr,@c(t, w.) (6],
maximum eigenvalue. The matched-filter design uses t gﬁ] Factorization (13) is based on the approximation of the
principal component to generate a beam that points into t near convolution by the circular convolution. Therefore, it is
direction of maximum powee; (w) = w (w)x(w) [14]. only accurate whefy < 7', where( is the filter length and”

Fig. 1 displays in gray scale, the values of (8) for the bealh the r?malyss W'”.do.W Iength_. _Note also that independent S19-
nals will have vanishing empirical cross-power only for suffi-

rns pr he first two principal component, wher .
pat_te s produced by the first two brincipal compone t eCI ntly long estimation times [26], which may go much beyond
white and black correspond to the highest and lowest values : o ;

. ' o the stationarity time of the signals. On the other hand, also note
the response magnitufi€w, 6)|. The first principal component . : . .
. : . that averaging over extended time periods may in effect lead to
filter is shown on the left and the second is shown on the right._.. X . . , . .
Stationary estimates, which violates the nonstationarity require-

The sensors were in a linear array of four microphones, witrm\e
total array aperture of 70 cm. The sources were at incident ES
gles of 0 and—4( to the array. Note that the response of the

principal componentfilters is high for the orientations with higt optimization Criteria
signal powers. Note also that in the presence of multiple sources, . . . . . o
the maximum power does not always correspond to the sourc o/f\ criterion and algorithm for simultaneous diagonalization of

interest or even the same source for all frequency bands. Furth Vy(t’ w) °Ver.”?“'F'p'et must be chosen. Previously, we had
. . . proposed to minimize the sum of squares of the off-diagonal
more, due to the orthogonality assumption, second and hig

r
components do not necessarily have a one-to-one corresp%?ﬁ-m ents oftyy (, w) [6]

dence with the sources. - 2

For instantaneous mixtures, the separation algorithm is often'](W) =Y a(w) [Ryy(t, w) — diag[Ryy (+, W) (14)
applied only to the firsti/ components. Though a similar ap-
proach can be taken in the convolutive case [23], our curreMith the factorization (13), and wherd.|| refers to the
experiments indicate that the signal of interest is often foufidobenius norm, defined agM||> = Tr(MM"). For faster
also in higher componentd{+1, M +2, ...). We have so far convergence using gradient descent, we normalized by the total
not been able to demonstrate that subspace analysis can givi&iBHt power per frequency with(w) = 3=, Ry (t, )72

additional gain over constraining the filter coefficients based df [25] a diagonalization criterion is suggested based on
geometric assumptions. the coherence function, which can be written conchehg

||diag(R)~Y/?R diag(R)~/2||. The diagonal elements of

nt of second-order source separation [6]. This tradeoff has to
determined based on the statistics of the signals.

t,w

IThe factorizationR ... (w) &~ U(w)R..(w)UH(w), with R..(7) =
E[z(t)z"(t + 7)] is approximately correct when the filter length(7) is 2In the remainder of this paragraph we abbrevRtg, (¢, ) = R and omit
small compared to the analysis window. the sums ovet andw for brevity.
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and top right plots are the magnitude responsgy, ¢)|, with
steering angle¢; = 0° andd, = —40°. Condition C2 re-
quires thatD(w, 6) is invertible for the given set of angles.
However, this is not always possible. A data independent filter
structure that guarantees condition C2 can be computed with
a least squares approach and is given by the pseudo-inverse
of D (w, #), or including a regularization term3I to com-
pensate for noninvertibility; the solution is given By (w) =
D#(w, 6)[D(w, 8)D¥ (w, 8) + SI]~1. We denote this solution

by LS-C2. The bottom two plots of Fig. 2 show the resulting
beam patterns. At the frequencies where the grating fobés

a beam pattern coincide with the interfering angBsw, )

is not invertible (e.g., Fig. 2, bottom at about 5.6 kHz). It is
therefore not reasonable to try to enforce C2 as a hard con-
straint. Rather, as we confirmed in our experiments, it is ben-
eficial to regularize the inverse problem by adding a penalty
term of the formJca(w) = [[W(w)D(w, 8) — I||° to the op-
timization criterion (14). Note also that power or cross-power
minimization will minimize the response at the interference an-
gles. This will lead to an equivalent singularity at those frequen-
cies. It is therefore beneficial to enforce constraint (15) also

Fig. 2. Responses for data independent beamforming. Results for algoritt@®y as a regularization by using a penalty term of the form
delay-sum and LS-C2 are shown. The dB values here and in the followinfy, (w) = ||diag[W (w)D(w, 8)] — I||2.

beam plots represent the SIR obtained for separation of two sources. All beam

plots shown in this paper assume the same four-microphone configuration

corresponding to the recording array. VI. EXPERIMENTAL RESULTS

r-400 *00

Now we present a number of different instantiations of
the coherence function are normalized to 1, which resuligometric source separation on recorded audio data. We
in a fast converging gradient algorithm. In [27] a diagpresent details of the recordings and data in Section VI-A.
onalization criterion based on the Hadamard inequalityy Sections VI-B and VI-C, we will describe the specific
Trllog(R)] — log[det(R)] was proposed. A similar diagonal-algorithms. In Section VI-D, the resulting beam patterns will be
ization criterion, based on the maximum likelihood (ML) cosgiiscussed and in Section VI-E, a more complete performance
assuming multivariate Gaussian distributions, was preseniggluation will be given in terms of signal-to-interference ratio
in [28], Tr[diag(R)™'R] — log{det[diag(R)"'R]}. All of (SIR) for two and three simultaneous acoustic sources and

these criteria are to be minimized with respect to the filt&farious microphone configurations. We defer the details of
coefficientsW. Their lower bound of zero is obtained if andsgurce localization to Section VI-F.

only if R is diagonal.
A. Data and Methods

All recordings used a linear array of cardioid condenser mi-
We will assume, without loss of generality, that throphones with an aperture of 70 cm in moderately reverberant
sources we are trying to recover are localized at anglgsoms (30 =~ 50 ms). The number of microphones was varied
6 = [61,..., 0] and at sufficient distance for a far-fieldfrom two to eight. The angleg; of the multiple sources were
approximation to apply. Following Section I, the responsgjentified based on the response profiles using eight sensors
of the M filters in W for the A/ directions iné is given by 55 outlined in Section VI-F. All source locations were reliably
W(w)D(w, 8), whereD(w, 8) = [d(w, 61), ..., d(w, 0m)].  identified from the data despite the fact that one source is lo-

D. Geometric Constraints

We will consider linear constraints such as cated outside the recording room; its radiation characteristic is
o rather diffuse as the signal is radiating through the open door
Cl: diag(W(w)D(w, 8)) =T (15)  of the room. Fig. 3 shows an overhead view of the experiment
or, setups.
Cc2: W(w)D(w, 8) = L (16) The data was stored and processed at 16 kHz sampling rate

and a filter length of = 512 was mostly sufficient in these
Constraint (15) restricts each filter!’ (w)—theith row vector experiments. We introduced a delay(@f2 in all filters, which
in W (w)—to have unit response in directiép Constraint (16) can be simply implemented by introducing a delay in the defini-
enforces in addition that each filter has zero response in the #n of the array vectord. Since the resulting filters are rather
rection of interfering signals;, i # ;. compact around that central deldy, = @ was sufficient to
Note that the conventional delay-sum beamformer, given Bylarantee an accurate approximation in (13).
wi(w) = df(w, 6;), satisfies constraint C1 strictly. Exam-

?

ples are shown on the top two plots of Fig. 2. The top left 3Periodic replication of the main lobe due to limited spatial sampling.



PARRA AND ALVINO: MERGING CONVOLUTIVE SOURCE SEPARATION WITH GEOMETRIC BEAMFORMING 357

422m T3 a7

Array
1.56 m 0.70 m

0.20m :|
@
/

1.17m 0

3.72m
0.15m @ @

_GEEiEEAE

L
Pen 1 1}
BN
500
F ol -
el
W0
W
o

+0.77m ® O, w0y
o ® © @ © o
L i}

-+ 046m 046m 046m 046 m Ly
590 m o

)

fo )

Array ""::

@ 0.70 m
6: 3.13m
©)
®

L
T

Fig.3. Overhead views of experimental set-up for two-source recordings (tog
and three-source recordings (bottom). Numbered circles indicate various sour
positions.

bao to® taoo to°

B. Geometrically Initialized Source Separation Fig. 4. Resulting responses of geometrically initialized source separation.

Many researchers have obtained reasonable separaffgil % IaLione it Sl sun pesmorr (G551, i
results despite ignoring the permutation problem. We argue that
this is due to the specific initialization within an optimization . . . .
procedure. When constraints (9) are expressed as an oFlﬁt satisfy those constraints can bg cqmputed explicitly with a
mization criterion such as (14), the permutation ambiguity gast-squares (LS) approach resulting in
represented by a set of optima! filterg of Which.only one corre2: wi () =[e;, dy, ..., di_y, digi, ..., dM]# e (18)
sponds to the correct permutation. Since solutions are typically
close for neighboring frequencies, close-by initial conditionghere# indicates the Hermitian transpose of the pseudo-in-
typically converge to solutions with consistent permutationgerse, andd; is theith column of D(w, ). In Fig. 4, the re-
Therefore, consistent permutations are expected within laggting response patterns are shown for one example of two si-
frequency bands, and proper initialization of the filter structur@ultaneous sources and anglésaid —40°. For comparison,
may adequately address the permutation problem. we report also the results obtained with a unit filter initializa-

We optimized criterion (14) with different initializations. Intion, W(w) = I, which is the initialization conventionally used
all cases we constrainesl! (w)e; = 1, for all 4, to normalize in blind source separation, and corresponds to our previous blind
the scale during optimization. We obtained the best perfaource separation (BSS) algorithm [6]. In the performance com-
mance when initializing with the filter structure correspondingarison of Section VI-E we will see that the algorithm GSS-I1
to a delay-sum beamformer pointing to the individual sourcegiirrently gives the best SIR, while the conventional unit filter
Using the orientation®,, we initialized the filter coefficients initialization is not robust across different sources and sensor

of the :th beam with configurations.

11 wil(w) =d"(w, 6)). (17) c. Geometrically Constrained Source Separation

Example beam patterns corresponding to this initialization areln an online implementation of a separation algorithm, the
shown in Fig. 2 (top). Minimization of (14) with initialization concept of introducing geometric information through an ini-
11 will be referred to as GSS-I1. Alternatively, in GSS-I12 wdialization is not feasible as the source positions in the envi-
initialized with beams that place zeros at all orientations of ilfenment may be changing dynamically. It is more realistic to
terfering sources. The initialization filters with minimum nornregularize the filters with the geometric information through a



358 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 6, SEPTEMBER 2002

-0 124 DEE-C0 B4R B MISE T L= -
- 3 ] 1

Fig. 5. Responses for geometrically constrained source separatibig. 6. Responses for multiple sidelobe canceling (MSC) and linearly
Algorithms GSS-C1 and GSS-C2 minimize (19) with constraints C1 and @®nstrained minimum variance (LCMV).
respectively.

In all experiments the cross-power spedRay (¢, w) are es-
penalty term. We have further addressed the problem of nonjiyaated at five time instances with a time window of about 3 s
vertibility discussed in Section V-D by introducing a frequenci, ey such thata total of about 15 s of data is analyzed. We iterate

dependent weighting of the penalty term. The idea is to eliMyg gragient descent algorithm 400 to 1600 times depending on
nate the constraints from the optimization for those frequengy, number of microphones used.

bands in whichD(w, ) is not invertible. A rather straightfor-
ward metric for invertibility is the condition number. We therep. Discussion of Resulting Beam Patterns
fore weight the penalty term with the inverse of the condition First we would like to qualitatively discuss the resulting re-

. i Y "
number ofD, €., )‘(.w) .{Cond[D(w’ 0.)]} » which is Zero sponse patterns of Figs. 4 and 5, and compare them with the re-
whenD(w, #) is not invertible and remains bounded otherwise ; . .
. o : Sults of some conventional beamforming algorithms as shown
i.e.,,0 < AMw) < 1. The total cost function including frequencyin Fig. 6

dependent weighting of the geometric penalty term is given by Linearly constrained minimum variance (LCMV) minimizes
J(W) +>\oz>\(w)J01/z(W(w)) (19) power at all times while strictly constraining the response
w for a known source location [15]. In this specific LCMV

whereJ (W) s given by (14), and, is scaling constant, chosenlgorithm we have in addition implemented weight decay
to bel /7', such that the two terms are of the same order of mal@- avoid spurious maxima in orientations from which no
nitude. Optimization of (19) is referred to as algorithm GSS-cRower is detected [30]. The weights are decayed toward the
or GSS-C2 depending on which penalty term is used. The &elay-sum beamformer with a regL_JIarization term_ of the form,
ample of Fig. 5 shows that in algorithm GSS-C1, the penalfllW(w) — D (w, 8)||*. Multiple sidelobe canceling (MSC)
term Jc; maintains the response of filterin orientations;. In ~ US€S knowledge of silent periods of each source during which it
algorithm GSS-C2 the penalty tersia.,; minimizes in addition minimizes power. For the MSC algorithm, the speech segments
the response for the orientations of the interfering sources. Were labeled by hand. It represents a best-case result which can
All GSS algorithms reported here minimize the cost functioB€ obtained only using this additional information and is given
using conventional gradient descent for complex variables [28re only as a reference. _
The gradient of the cost function and two regularizers are givenFigs. 4-6 show in all cases that the main lobe and zeros are

with E(f, w) = Ryy(t, w) — diag[Ryy(, w)] by at the dgs!re@ ,:-.mgl'es consistently' across frequency. Withput

geometric initializations or constraints that is not necessarily

M :4Za(‘“)E(t’ W)W (w) Ry (£, w) the case (see Fig. 1). Algorithms BSS, GSS-I12, and MSC

IW™(w) ” mainly place a zero at the angles of interfering sources. Their

8Jc1 (W) Y response_in other Qirections is not further specified. It is there-
TWH ) =2diag[W(w)D(w, 8) —I| D" (w, ) fore possible that side zeros cancel the sources at bands that are

important for the application. The results for GSS-I11, GSS-C1,
GSS-C2 exhibit in addition a main lobe in the direction of the
corresponding source. For conflicting frequency bands, where

m =2[W(w)D(w, §) — 11 D" (w, 6).
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Fig. 7. Performance comparison of the proposed algorithms and geometric

beamforming algorithms. Fig. 8. Performance for the separation of three sources using eight sensors.
SIR improvement are averaged over three configurations with angfs,
—41°, 0°; —60°, 0°, 60°; and—43°, 0°, 36°. The initial SIR is in average

a grating lobe coincides with the location of an interferingbout—3 dB.

source, multiple cross-power minimization cancels the main

lobe for GSS-11, while conserving it somewhat for GSS-Cresolution, all algorithms perform poorly when the sources are
and GSS-C2, due to the geometric penalty. In LCMV, th@o close.

power minimization and the strict constraints lead to someFig. 8 reports the performance of separating three sources,
discontinuities in the response. In particular, the constraifwo speech sources and babble noise, using eight microphones.
and power minimization are contradictory criteria when signdis indicated in Section IV-A, the permutation problem becomes
power originates from the same direction as the unit-gaworse as the number of sources increases. To our knowledge
constraint. Qualitatively, the results for the data independdhis is the first report of successful source separation for more
LS-C2 algorithm seem to capture both main lobe and zerostiran two sources from simultaneous real room recordings. The
the correct locations. However, its performance in terms of Sgerformance ranking mostly mirrors the results obtained for the
is inferior to the data-adaptive algorithms. separation of two sources.

. F. Source Localization
E. Performance Comparison

. . . We used a source localization method based on subspace
A systematic performance evaluation of the algor'tthforﬂ}a%alysis similar to what is used in the MUSIC algorithm [31].
case of two sources is presented in Fig. 7. We varied source o

i dth ber of G | ts SIR 8?t'hogonality of the eigenvectors guarantees that minor com-
ions and the number of sensors. Grayscale represents g Hents,uMH(w), .., un(w), do not capture high power

formancg in d flf)r thi_dlﬁerer:jt algotrjlthm:. SIR peff"rfn""”c ﬁ}%?als covered by the principal components. Therefore we use
averaged over afl positions and numoer ot SENSOrs IS gIVeN Ntk i the response of minor components to identify source

to t_he algorithm name. An array with aperture_of 70_cm andlgcationse. To obtain a more robust angle estimate we combine
variable number of sensors was used (two to eight mmrophoq&g response for all frequencies

varied on the horizontal axis). Two sources are located at vari-

able angles. The results are sorted by their relative angle along N =
the vertical axis [12, 18, 1%, 25°, 3%, 37, 38, 41°, 50° @)=Y > [uf(wd(w,6). (20)
which correspond, in Fig. 3 (top), to locations pairs (1,2), (3,4), w =M+l

(1,5), (1,6), (1,7), (1,8), (1,9), (1,10), and (11,12), respectivel\Sjource locations can be identified in the minima of this response
The top row of Fig. 7 shows the results for some knowprofile as shown in Fig. 9. We defined source locations agthe

beamforming algorithms (delay-sum, LS-C2, LCMV). Thangles with the smallest valuesx(#) within a window of 7.
center row represents the results for unconstrained multipleThis profile reflects the spatial distribution of the main power
cross-power minimization with different initializations in-observed by the array, and will depend on the radiation char-
cluding the geometric initialization (BSS, GSS-12, GSS-I1acteristic and environment of the sources. The width of these
The bottom row shows the results for the geometrically cominima gives us an indication of the adequacy of the localiza-
strained separation algorithms (GSS-0&SS-C1, GSS-C2). tion assumptions used in this work. It is to be compared to the
Algorithm GSS-Clis the same as GSS-C1 only with constardchievable spatial resolution for a given aperture and frequen-
penalty term\. Within each row, the algorithms are sorted byies of interest. A simple aggregated metric for the spatial reso-
average performance. Comparison of the results for GSS-Qition of an array is the response profile for a delay-sum beam-
and GSS-C1 show the advantage of the frequency dependenmer, i.e..r(#') =" Zf‘il |d* (w, 6;)d(w, ¢)|. In Fig. 9,
weighting of the penalty term. Due to the limited angulaone can verify that the width of the extrema are in the same
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response profile

; ‘ ‘ , : . ‘ ‘ . To understand the effect of frequency permutation we express

the signals in terms of theif-point frequency representation,
W Yi (t) — Zf;é C(?ﬂ'/T)wtyi(w), Whereby

Ely; )y, (¢ +7)]
T—1 T-1
delay&sum — E Z Z e(j27r/T)(—wt+w’t+w’7-)y;< (UJ)Z/J (UJI) (21)
—8‘0 —6‘0 —4‘0 —2‘0 l'IJ 2‘0 4‘0 6‘0 8‘0 w=0 wr=0
angle _ Z Z e(jQW/T)(—wt-I—w't-l—w"r)E [y;k (w)yj (w/)]

Fig.9. Top: Response profile (20) of the six smallest eigenvectors for the same ~ “7«o «/#«o

signals as shown Fig. 1. The source location can readily be identified. Bottom: 9 TV —on ti”

Response profile for two delay-sum beamformer pointing to the corresponding + Z U/ I (Centhethe'n) [y;k (wo)yj(w/)]
angles. The vertical axis has an arbitrary shift and scale. W’ wy

+ 3 D By )y (wo)]
wFHwy

+ /D entteattent) Byt (wo)yj(wo)] =0 (22)

range, indicating that the sources are localized judged by the
resolution of this array.

provided that bothy; (¢) andy,(¢) are zero mean and mutually
VIl. CONCLUSION independent. The purpose of this analysis is to identify the ef-
We have proposed a method that, for the first time, combing:sCt. Of a singly permuteq frequenayp, on t_he second-order
. . . . . . Sfatistic. Under permutation of frequency hig, (22) becomes
convolutive blind source separation with adaptive beamforming.
The key assumption of this work is that the sources are localized, Y~ Y~ (l27/ Dottt gy, (u)]
at least up to the spatial resolution of a given array. This allows  w=wy w’sw,
us to formulate geometric constraints on the filter coefficients, 2 TN ot £t .
much as is done in conventional beamforming. A number of dif- + Z Mt B [y (wo)y; (w)]
ferent geometric constraints can be introduced, leading to a class w'Fuo
of algorithms we called geometric source separation (GSS). The Z 0927/ TY(—wttwot+woT) g [y (w)yi (wo)]
performance of these GSS algorithms are superior to that of con- W
ventional beamforming algorithms. The geometric information p o .
was introduced into the algorithm as initialization of the filter + VIR Centtettan) [} (wo)wi(wo)] - (23)
parameters and as regularizations using penalty terms. Neitfige first and fourth terms of (23) are still zero due to the as-
approach is specifically limited to the second-order criterion wimption of independence. The second and third terms of (23)
used; both can be equally well combined with other higher-ordare equal to zero for w.s.s. signals, sinEg/*(w)y(w’)] o
criteria. In this work we have restricted ourselves to linear aR,,,(w)6(w — «') [32]. This shows that criterion (4) is insensi-
rays and source locations specified by azimuth. The discusstie to frequency permutation, making it an inadequate penalty
extends in a straightforward manner to the more general cégem to assign the signal consistently across frequencies to the
of arbitrary sensor arrangements and full 3-dimensional soujgpropriate recovered signal.
localization. Though our algorithms rely on specific source lo- . i .
cations, they are still blind algorithms since the source locatioRs Effect of Freqqen_cy Permutation on Time-Domain
have been identified from the data. Independence Criteria
Here we give numerical evidence that some higher-order
time-domain criteria are also adversely affected by frequency

APPENDIX permutation. To measure the accuracy of assumption (4) for
signalsy;(t) we define
A. Permutation Ambiguity in Second-Order Criteria Yoo (1) = Elyg Oy (t+ )] = By (O] E [y (t +71)]-
(24)

Permutation ambiguity affects not only frequency-domain iri:- . .
oo oo . For an incorrectly permuted signa(¢) and a correctly sepa-
dependence criteria but also the corresponding time-domain cri-

) . rated signalk(t) we report the relative amplitudes for specific
teria. Here we show analytically that far = m = 1, the gnak(?) P P P

. . o o ) values ofn andm
time-domain criterion in (4) is invariant to frequency permu-

2 2

tation for wide-sense stationary (w.s.s.) signals. Permutations Z;%n% (7) + 72,2, (7)

convert cross-correlation terms into auto-correlation terms. We 10 x logy o S A2 (1) +42 . (1) (29)
84,85 84,8

then use the well-known fact that the frequency components of ™ ’ ’

the autocorrelation function are independent. A similar argas a function of the percentage of incorrectly permuted fre-
ment can be made for nonstationary signals when summing {glency bins in Fig. 10. For independent signals and perfect esti-
overt. mation, the denominator in (25) vanishes. Nonvanishing values
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Fig. 10. Moment and cross-moment terms versus percentage of incorrect|y0]
permuted frequency bins. The solid lines illustrate the moments of the
incorrectly permuted signals. The dashed lines illustrate the cross-moments.

(11]

correspond to the estimation error, and can be used as a ref([elr?
ence value for the sample averages of these quantities.

In Fig. 10, the solid lines illustrate the moments of the incor-[13
rectly permuted signals. The dashed lines illustrate the cross-
moments. Both are measured in decibels over the correctly peii4]
muted cross-moments as is shown in (25). Each row represents
different signal pairs. The top row corresponds to two speechis]
signals, the center row corresponds to two different music sig-
nals, and bottom row corresponds to music and speech. All sié%el
nals were 7 s long and sampled at 16 kHz. They were normalized
to unit variance and zero mean. We summed over 2048 taps. [17]

As show in the previous section, the time-domain criterion (4)
is invariant with respect to permutations of individual frequencyi18]
bins for the case = m = 1. This is confirmed numerically and 19]
shown in the left column of Fig. 10. Therefore, second-order
criteria can not be used to find filters with correct permutations.
Fig. 10 also demonstrates numerically thatfoe= 1, m = 2, [
andn = m = 2, the time-domain criterion (4) is not robust
to permutations. For some signals (top row), the higher-ordel?!]
cross-moments are in fact minimized by the correct permuta-
tions. However, for some other signals (middle and bottom row)22]
the higher-order cross-moments are minimal for incorrect per-
mutations. This simulation indicates that third- and fourth-ordeg,3,
time-domain criteria are not robust to the permutation problem,
as the criteria are limited by estimation accuracy, in particulaf?*!
for nonstationary signals.

[25]
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