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Abstract— The goal of this paper is to improve on single-trial
classification of electro-encephalography (EEG) using linear
methods. The paper proposes to combine the classification of
the spatial distribution of activity with the classification of its
temporal profile. The work is based on the idea that a current
source in the brain has a reproducible temporal profile with
a static spatial projection to the electrodes. This assumption
reduces the parameter space of a linear classifier to a rank-one
factorial space. The new model limits over-fitting due to the
fewer number of parameters, and furthermore, it allows us to
declare a prior belief of smoothness on the spatial and temporal
profiles of the source. Our experiments show that the method is
useful as a classifier with an area under the ROC curve of 0.93
having only 40 target trials available for training. Investigation
of the trained classifier encourages us to belief that the method
can also be useful as a tool to interpret the activity in the data
at hand with respect to experimental events.

I. INTRODUCTION

Extracting relevant brain activity from electro-
encephalography (EEG) data remains a challenging
task due to its low signal-to-noise ratio. The activity
of neuronal processes which one would like to study is
typically much smaller than the total variance of the EEG
data. Recently, methods from pattern recognition have been
used in particular in the context of brain-computer interface
(BCI) systems, see e.g. [5], [7]. The goal in BCI is to
identify EEG activity on a single-trial basis1, e.g. to classify
the EEG activity so as to generate a control signal to an
external prosthetic device.

Linear classification can find spatial projections associated
with specific cognitive or perceptual events. To do this, a
linear classifier can be applied to the spatial profile of the
evoked response. Such spatial projections of the data can
be interpreted as the activity of the neuronal process that
is associated with an event of interest [9]. An alternative
method of identifying EEG activity has been to consider
the time course of activity in individual electrodes. This
more conventional paradigm has coined expressions such as
the ‘N100’ and ‘P300’ activity, which are well recognized
in the cognitive neuroscience community (N100 refers to a
negativity at 100ms after stimulus presentation and P300 a
positivity after 300ms.) In fact, the time course of activity
has also been used to identify, on a single-trial basis, activity
associated with an observable event. In particular, linear
classification of the time course of an evoked response has
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1A ‘trial’ refers to a snip of EEG data that was recorded time-locked to
an event.

been used on individual electrodes [2]. This paper addresses
the question of how to combining both the time and space
dimension in a linear classifier. The goal is to extend previous
work on linear single-trial classification of EEG activity to
the combined time and space domain.

Training a classifier for EEG is often challenging because
of the high data dimensionality which leads to over-training.
For instance, the naive approach of combining spacial and
temporal information would combine multiple samples in
time from all electrodes to a single feature vector, e.g. if
the relevant activity in 64 electrodes extends over 500ms
sampled at 1kHz this approach would lead to 32,000 feature
values, whereas the number of trials is often little more than
100. Therefore, given the typically limited number of trials
this approach will fail.

General classification algorithms can be improved upon
by incorporating useful assumptions about the physiological
basis of the EEG signals. This paper proposes two regu-
larization methods that are based on simple assumptions
about the activity of interest. First, we assume that the
activity is static in space, that is, the neuronal processes
of interest does not change except in its overall magnitude,
while its anatomical distribution remains unchanged. Second,
neighboring electrodes as well as neighboring samples in
time do not vary drastically. Instead much of the variation
observed from electrode to electrode, and from one sample
to the next are due to unrelated neuronal processes or sensor
noise.

In summary, in this paper we take a simple linear classifier
and constrain the parameter space to be rank-one in a
spatio-temporal factorial sense, hence reducing the number
of parameters significantly. We also show how the factorial
parameter space is useful for regularization in the space and
time dimensions.

II. RANK-ONE BILINEAR DISCRIMINANT ANALYSIS

An EEG trial is represented here by the matrix Xn ∈
IRD×T where n is the trial number, D is the number of
electrodes, and T is the number of samples retained relative
to the event. Let yn denote the true label for trial n. This
label indicates the event that has to be recognized from the
EEG data Xn. We model the expected label for trial n by
a linear network with logistic output unit, i.e. the ‘Logistic
Regression’ model

E[yn] =
1

1 + e−ψ(Xn)−w0

(1)

where ψ(Xn) is a linear projection onto IR of the data in trial
n, and w0 is a free ‘intercept’ parameter which models any



offset in the projected data. Training of the logistic regression
model is now a matter of finding the right parametrization
of ψ(Xn) and estimating those parameters based on training
data with known true labels. The linear network which is
fully connected to each point in the nth trial data matrix is

ψ(Xn) =
∑

i,j

(W)ij(Xn)ij (2)

where W ∈ IRD×T is a matrix of free parameters. The
double sum in (2) is simply a projection of the data onto IR,
i.e. it is a direction, in the space of spatiotemporal matrices in
IRD×T , which should be optimized to discriminate between
classes. The parametrization in (2) does not utilize the spatio-
temporal structure of the data, i.e. it ignores the fact that
each trial is given as a matrix Xn with space and time as its
two ways2. In cases where it seems plausible that temporal
evoked signatures from different sources are common to all
spatial dimensions but with different weight in each spatial
dimension we can decompose the projection using

ψ(Xn) = u
T
Xnv (3)

which is equivalent to (2) with a rank truncating (rank-one)
bilinear decomposition of the weight matrix

W = uv
T (4)

where u captures the spatial profile (topography) and v

captures the temporal profile of the projection.

A. Cost function with smoothness regularization

The log likelihood of the parameters in a Logistic Regres-
sion model is given by

l =
N
∑

n=1

yn(w0 + ψ(Xn)) − log(1 + ew0+ψ(Xn)) (5)

assuming yn independent and Bernoulli distributed [6].
The decomposed structure of the bilinear discriminant

makes it convenient to declare prior knowledge in IRD×T .
For instance, if knowledge is available about the smoothness
in the direction of either D (spatial smoothness) or T

(temporal smoothness), such knowledge can be incorporated
by declaring a prior p.d.f. on u or v respectively.

One way to incorporate prior assumptions in the estimation
is through the posterior distribution of the weights. The log
posterior is equal to the log likelihood plus evaluation of the
log prior, i.e.

log p(w0,u,v|X) = l(w0,u,v)+log p(w0,u,v)−log p(X)
(6)

where X denotes data in all the trials available. Prediction
about new data should be done by averaging over all possible
model parameter values weighted by their posterior, which
might improve generalization performance of the model in

2The axes or dimensions of a matrix are often called “ways” in the context
of bi-linear models

situations with limited training data, see e.g. [4]. Here we
consider the maximum of the posterior (MAP) estimate, i.e.

(w0,u,v)MAP = arg max
w0,u,v

l(w0,u,v) + log p(w0,u,v)

(7)
where with independent priors

log p(w0,u,v) = log p(w0) + log p(u) + log p(v) (8)

We declare Gaussian Process priors for u, v, and w0 with
u ∼ N (0,K), and similar expressions for v and w0, where
the covariance matrix K defines the degree and form of
smoothness of u by choice of covariance function: Let r be
a distance measure in the measurement space of w, i.e. r is
either a spatial distance measure or a temporal distance. For
instance, spatial smoothness is declared by putting a prior on
u; and rij is then a spatial measure between rows i and j of
the spatiotemporal data matrices Xn, e.g. euclidian distance.
Temporal smoothness is obtained similarly by putting a prior
on v; and rij is then a temporal distance, e.g. time difference
between columns i and j of the spatiotemporal data matrices
Xn.

Then a covariance function k(r) expresses the degree of
correlation between any two points with that given distance.
For example, a class of covariance functions that has been
suggested for modelling smoothness in physical processes
(the Matérn class, see e.g. [10]) is given by

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν

K

(√
2νr

l

)

(9)

where l is a length-scale parameter, and ν is a shape
parameter. The parameter l can roughly be thought of as
the distance within which points are significantly correlated.
The covariance matrix K is then built by evaluating the
covariance function (K)ij = σ2 k(rij). We note that there
is a scaling ambiguity between u and v and the variance
parameter σ2 can thus be kept equal for u and v. K(·) is a
modified Bessel function, see also [10].

B. ML gradient and Hessian

We seek the maximum likelihood solution by iterative
gradient based optimization. Define π(Xn) = E[yn] as
computed in (1). Then, the gradient of (5) is given by

∂l

∂w0
=
∑

n

yn − π(Xn) (10)

∂l

∂u
=
∑

n

Xnv[yn − π(Xn)] (11)

∂l

∂vT
=
∑

n

u
T
Xn[yn − π(Xn)] (12)

And the Hessian matrix entries are given by

∂2l

∂w0∂w0
= −

∑

n

π(Xn)[1 − π(Xn)] (13)

∂2l

∂w0∂u
= −

∑

n

Xnvπ(Xn)[1 − π(Xn)] (14)



∂2l

∂w0∂vT
= −

∑

n

u
T
Xnπ(Xn)[1 − π(Xn)] (15)

∂2l

∂u∂(u)j
= −

∑

n

Xnv(Xnv)jπ(Xn)[1 − π(Xn)] (16)

∂2l

∂vT∂(v)j
= −

∑

n

u
T
Xn(uT

Xn)jπ(Xn)[1 − π(Xn)]

(17)
∂2l

∂u∂(vT)j
=
∑

n

(Xn):j [yn − π(Xn)]−

Xnv(uT
Xn)jπ(Xn)[1 − π(Xn)]

(18)

Optimization in logistic regression is usually done though
iterative maximum likelihood estimation using Newton-
Raphson updates, see e.g. [6]. Here, however, we have
not provided any guarantee that the Hessian matrix will
be definite, and we therefore propose to optimize the cost
function using the so-called ‘Damped Newton’ optimization
scheme which will take Newton steps using an adaptive
regularized version of the Hessian matrix, see e.g. [8].

C. MAP gradient and Hessian

For iterative MAP estimation, the prior terms to be inserted
in (8) are

log p(w) = −dimw

2
log(2π)− 1

2
log(detK)− 1

2
w

T
K

−1
w

(19)
The extra terms, to be added to the ML terms, are; for the
gradient

∂ log p(w)

∂w
= −K

−1
w (20)

and for the Hessian

∂2 log p(w)

∂w∂(w)j
= −(K−1):,j (21)

III. EXPERIMENT — TARGET DETECTION IN EEG

In the following experiment we illustrate the usefulness
of the method in a real EEG application. The dataset was
63 channel (full row rank, average reference) EEG at 200Hz
sampling rate. The paradigm was visual stimulation (10Hz
image flicker), with rare but anticipated target images [11].
A total of 2500 trials were recorded, but only 50 of those
trials were target trials. Hence, the number of target trials
were less than the number of parameters in the model.
Thus, generalization performance of an ML estimated model
without smoothness regularization was expected to be poor
which was confirmed by five-fold cross validation (i.e. 40
target trials available for each training) and measuring the
area under the Receiver Operating Characteristics (ROC)
curve which is invariant to class-skew, see also [1]. We
will refer to areas under ROC curves using the abbreviation
‘AUC’. The resulting AUC, using ML estimation, was poor
as expected; AUC = 0.72 which corresponded to roughly
0.32 false positive rate and 0.68 true positive rate.

We then used the Matérn class of covariance functions
(9) for incorporating smoothness regularization in the model.

Std.dev. σ Length scale l Matérn shape ν

Intercept w0 5 · ·

Smoothness of u 0.1 0.1 100

Smoothness of v 0.1 18 2.5

TABLE I
DECLARING THE A PRIORI ASSUMPTIONS ABOUT THE TEMPORAL AND

SPATIAL SMOOTHNESS OF THE PROJECTION USING GAUSSIAN

PROCESSES. THE PARAMETER VALUES FOR THE MATÉRN COVARIANCE

FUNCTION (9) ARE SUMMARIZED IN THIS TABLE.

Temporal smoothness was straight-forward to implement by
letting rij equal the normalized temporal latency |i − j|
between samples i and j. Spatial smoothness was imple-
mented by letting rij equal the euclidian distance between
electrodes i and j in a normalized space where the human
head was assumed spherical with radius 0.5. The parameters
of the Gaussian Process priors were hand-tuned in a few
(< 20) runs with the algorithm monitoring and optimizing
the area under the ROC curve using five-fold cross validation.
The best set of parameters are summarized in Table I. The
resulting area under the ROC curve AUC was 0.93, and
corresponded to roughly 0.13 false positive rate and 0.87 true
positive rate, indicating that the algorithm was successful
in estimating a discriminating direction which was highly
relevant for the experimental task. This finding underlines
the usefulness of the method as a single-trial classifier for
EEG.

We also investigated the topography and temporal profile
of the discriminating projection. First the model was re-
estimated using the parameter values in Table I but this time
for the whole data set. The algorithm converged in 41 iter-
ations, and Fig. 1 shows the resulting projection topography
and temporal profile. The peak at 300ms in the temporal
profile in Fig. 1(b) is in agreement with the conventional
P300 which is typically observed with a rare target stimulus
[3], [9]. The early peak (here around 125ms) has likewise
been reported previously for this visual paradigm [11]. The
projection topography in Fig. 1(a) also coincides with the
previous findings in the literature [11], [3], [9].

IV. CONCLUSION

We have presented a bilinear decomposition of the dis-
criminating projection in logistic regression which reduces
the number of parameters in a physiological meaningful
manner. Furthermore, we proposed the use of Gaussian
Processes as a way to regularize the solution with respect
to smoothness. Our experiments showed that the method
was useful as a classifier, obtaining an area under the ROC
curve of 0.93 in a quite high-dimensional EEG data set with
only 40 targets available for training. Further investigation
of the results was encouraging from a physiological point of
view and the method could potentially be useful as a tool to
interpret the activity in the data at hand with respect to the
experimental events.



(a) Projection topography, û.
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(b) Projection temporal profile, v̂.

Fig. 1. Projection topography and temporal profile found by rank-one
bilinear discriminant analysis in EEG data. There’s a peak in the time course
around 300ms, and a peak around 125ms, and they agree well with previous
physiological findings in the literature.

REFERENCES

[1] T. Fawcett. ROC graphs: Notes and practical considerations for data
mining researchers. Technical report, Technical report HPL-2003-4.
HP Laboratories, Palo Alto, CA, USA., 2003.

[2] W. J. Gehring, B. Goss, M. G. H. Coles, D. E. Meyer, and E. Donchin.
A neural system for error detection and compensation. Psychological
Science, 4(6):385–390, 1993.

[3] A.D. Gerson, L.C. Parra, and P. Sajda. Cortical origins of response
time variability during rapid discrimination of visual objects. Neu-
roImage, 28(2):326–341, 2005.

[4] L. K. Hansen. Bayesian averaging is well-temperated. In S .S. Solla
et al., editor, Proceedings of NIPS 99, Denver, November 29 -
December 4, 1999, pages 265–271, 1999.

[5] S. Lemm, B. Blankertz, G. Curio, and K. R. Müller. Spatio-spectral
filters for improving the classification of single trial EEG. IEEE Trans
Biomed Eng., 52(9):1541–8, 2005.

[6] C. E. McCulloch and S. R. Searle. Generalized, Linear, and Mixed
Models. Wiley, 2001.

[7] C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller. Imagery of
motor actions: differential effects of kinesthetic and visual-motor mode
of imagery in single-trial EEG. Brain Res Cogn Brain Res., 25(3):668–
77, 2005.

[8] H. B. Nielsen. IMMOPTIBOX. General optimization software
available at http://www.imm.dtu.dk/˜hbn/immoptibox/,
2005.

[9] L. Parra, C. Spence, A. Gerson, and P. Sajda. Recipes for the linear
analysis of EEG. NeuroImage, 28:326–341, 2005.

[10] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for

Machine Learning. 272, The MIT Press, Cambridge, Massachusetts,
2006.

[11] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human
visual system. Nature, 381(6582):520–2, 1996.


