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Abstract

Traditional analysis methods for single-trial classification of electro-encephalography (EEG) focus
on two types of paradigms: phase-locked methods, in which the amplitude of the signal is used as
the feature for classification, that is, event related potentials; and second-order methods, in which
the feature of interest is the power of the signal, that is, event related (de)synchronization. The
process of deciding which paradigm to use isad hocand is driven by assumptions regarding the
underlying neural generators. Here we propose a method thatprovides an unified framework for the
analysis of EEG, combining first and second-order spatial and temporal features based on a bilinear
model. Evaluation of the proposed method on simulated data shows that the technique outperforms
state-of-the art techniques for single-trial classification for a broad range of signal-to-noise ratios.
Evaluations on human EEG—including one benchmark data set from the Brain Computer Interface
(BCI) competition—show statistically significant gains in classification accuracy, with a reduction
in overall classification error from 26%-28% to 19%.

Keywords: regularization, classification, bilinear decomposition,neural signals, brain computer
interface

1. Introduction

The work presented in this paper is motivated by the analysis of functional brain imaging signals
recorded via electroencephalography (EEG). EEG is measured across time and typically at multiple
scalp locations, providing a spatio-temporal data set of the underlying neural activity. In addition,
these measurements are often taken over multiple repetitions or trials, where trials may differ in the
type of stimulus presented, the task given to the subject, or the subject’s response. Analysis of these
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signals is often expressed as a single-trial classification problem. The goal for the classifier is to
determine from the EEG data which stimulus was presented or how the subject responded. Many
of these classification techniques were originally developed in the context of Brain Computer Inter-
faces (BCI) but are now more widely used to interpret activity associatedwith neural processing.

In the case of BCI algorithms (Wolpaw et al., 2002; Birbaumer et al., 1999; Blankertz et al.,
2002, 2003) the aim is to decode brain activity on a single-trial basis in order to provide a di-
rect control pathway between a user’s intentions and a computer. Such an interface could provide
“locked in patients” a more direct and natural control over a neuroprosthesis or other computer
applications (Birbaumer et al., 1999). Furthermore, by providing an additional communication
channel for healthy individuals, BCI systems can be used to increase productivity and efficiency in
high-throughput tasks (Gerson et al., 2006; Parra et al., 2008).

Single-trial discriminant analysis has also been used as a research tool tostudy the neural cor-
relates of behavior. By extracting activity that differs maximally between two experimental condi-
tions, the typically low signal-to-noise ratio of EEG can be overcome. The resulting discriminant
components can be used to identify the spatial origin and time course of stimulus/response spe-
cific activity, while the improved SNR can be leveraged to correlate variability of neural activity
across trials to behavioral variability and behavioral performance (Philiastides et al., 2006; Gerson
et al., 2006; Philiastides and Sajda, 2006) In essence, discriminant analysis adds to the existing set
of multi-variate statistical tools commonly used in neuroscience research (ANOVA, Hoteling T2,
Wilks’ Λ test, etc.).

1.1 Traditional EEG Analysis

In EEG the signal-to-noise ratio (SNR) of individual channels is low, oftenat, or below -20dB.
To overcome this limitation, all analysis methods perform some form of averaging, either across
repeated trials, across time, or across electrodes. Traditional EEG analysis averages signals across
many repeated trials for each individual electrode. Typical in this case is toaverage the measured
potentials following stimulus presentation, thereby canceling uncorrelated noise that is not repro-
ducible from one trial to the next. This averaged activity, called an event related potential (ERP),
captures activity that is time-locked to the stimulus presentation but cancels induced oscillatory
activity that is not locked in phase to the timing of the stimulus. Alternatively, many studies com-
pute the oscillatory activity in specific frequency bands by filtering and squaring the signal prior
to averaging. Induced changes in oscillatory activity are termed event related synchronization or
desynchronization (ERS/ERD) Pfurtscheller and da Silva (1999).

Surprisingly, discriminant analysis methods developed thus far by the machine learning commu-
nity have followed this dichotomy: First order methods in which the amplitude of theEEG signal is
considered to be the feature of interest in classification—correspondingto ERP—and second-order
methods in which the power of the feature is considered to be of importance for classification—
corresponding to ERS/ERD. First order methods include temporal filtering and thresholding (Bir-
baumer et al., 1999), Fisher linear discriminants (Parra et al., 2005; Blankertz et al., 2002), hierarchi-
cal linear classifiers (Gerson et al., 2006) and bilinear discriminant analysis (Dyrholm et al., 2007;
Tomioka and Aihara, 2007). Second-order methods include logistic regression with a quadratic term
(Tomioka et al., 2007) and the well known common spatial patterns method (CSP)(Ramoser et al.,
2000) and its variants: common spatio-spectral patterns (CSSP) (Lemm et al., 2005), and common
sparse spectral spatial patterns (CSSSP) (Dornhege et al., 2006).
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In the past, the process for choosing features for classification has beenad hocand driven pri-
marily by prior knowledge and/or assumptions regarding the underlying neurophysiology and task.
From a machine-learning point of view, it seems limiting to commita priori to only one type of fea-
ture. Instead, it would be desirable for the analysis method to extract the relevant neurophysiological
activity de novowith minimal prior expectations.

In this paper we present a new framework that combines both first and second-order features in
the analysis of EEG. Through a bilinear formulation, the method can simultaneously identify spatial
linear components as well as temporal modulation of activity. These spatio-temporal components
are identified such that their first and second-order statistics are maximally different between two
conditions. Further, through the bilinear formulation, the method exploits the spatio-temporal nature
of the EEG signals and provides a reduced parametrization of the high dimensional data space. We
show that a broad set of state-of-the-art EEG analysis methods can be characterized as special
cases under this bilinear framework. Simulated EEG data is then used to evaluate performance of
the different methods under varying signal strengths. We conclude the paper with a performance
comparison on human EEG. In all instances the performance of the present method is comparable
or superior to the existing state-of-the-art.

2. Second-Order Bilinear Discriminant Analysis

To introduce the new method we start by formally defining the classification problem in EEG. We
then present the bilinear model, discuss interpretation in the context of EEG,and establish a link to
current analysis methods. The section concludes with the optimization criterionand regularization
approaches. As the title of this section suggests, we termed our method Second-Order Bilinear
Discriminant Analysis (SOBDA).

2.1 Problem Setting

Suppose that we are given examples of brain activity as a set of trials{Xn,yn}N
n=1,Xn ∈ R

D×T ,yn ∈
{−1,1}, where for each examplen the matrixXn corresponds to the EEG signal withD channels
andT time samples andyn indicates the class to which this example corresponds. The class label
may indicated one of two conditions, that is, imagined right or left hand movement, stimulus or
non-stimulus control conditions, etc. Given these examples the task is then to predict the class label
y for a new trial with dataX.

2.2 Second-order Bilinear Model

To solve this problem we propose the following discriminant function

f (X;θ) = CTrace
(

U⊤XV
)

+(1−C)Trace
(

ΛA⊤XBB⊤X⊤A
)

+wo , (1)

where the parameters areθ = {U ∈R
D×R,V ∈R

T×R,A ∈R
D×K B ∈R

T×T ′
, wo ∈R,Λ ∈ diag(K)|

λii ∈ {−1,+1},C ∈ [0,1]. Some of these parameters may be specified using prior knowledge as
will be discussed later. The scalarsR, K and T ′ are chosen by the user and denote the rank of
matrix U,V A andB. Typically we useT ′ = T. The goal will be to use theN examples to optimize
these parameters such that the discriminant function takes on positive values for examples with
yn = +1 and negative values foryn = −1. To accomplish this we will use a standard probabilistic
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formalism—logistic regression—which will permit us to incorporate regularization criteria as prior
probabilities on the parameter as will be explained in Sections 2.6 and 2.8.

2.3 Interpretation and Rationale of the Model

The discriminant criterion defined in (1) is the sum of a linear and a quadraticterm, each combining
bilinear components of the EEG signal. The first term can be interpreted as aspatio-temporal
projection of the signal that captures the first-order statistics of the signal.Specifically, the columns
ur of U representR linear projections in space (rows ofX). Similarly, each of theR columns ofvk

in matrix V represent linear projections in time (columns ofX). By re-writing the term as:

Trace(U⊤XV) = Trace(VU⊤X) = Trace(W⊤X) ,

where we defined,W = UV⊤, it is easy to see that the bilinear projection is a linear combination of
elements ofX with a rank-R constraint onW. This expression is linear inX and thus captures di-
rectly the amplitude of the signal. In particular, the polarity of the signal (positive evoked response
versus negative evoked response) will contribute to discrimination if it is consistent across trials.
This term, therefore, captures phase-locked event related potential in the EEG signal. This bilinear
projection reduces the number of model parameters ofW from D×T dimensions toR× (D + T)
which is a significant dimensionality reduction that alleviates the problem of over-fitting in param-
eters estimation given the small training set size. This projection assumes that the generators of
class-dependent variances in the data have a low-rank contribution to each data matrixX. This
holds true in EEG data, where an electrical current source which is spatially static in the brain will
give a rank-one contribution to the spatio-temporalX (Dyrholm and Parra, 2006).

The second term of Equation (1) is the power of spatially and temporally weighted signals and
thus captures the second-order statistics of the signal. As before, eachcolumn of matrixA andB
represent components that project the data in space and time respectively. Depending on the struc-
ture one enforces in matrixB, different interpretations of the model can be achieved. In the general
case where no structure onB is assumed, the model captures a linear combination of the elements
of a rank-T ′ second-order matrix of the signalXB(XB)⊤. In the case where Toeplitz structure is
enforced onB (see Section 2.7), thenB defines a temporal filter on the signal and the model captures
powers of the filtered signal. Further, by allowingB to be learned from the data, we may be able to
identify new frequency bands that have so far not been identified in novel experimental paradigms.
The spatial weightsA together with the Trace operation ensure that the power is measured, not in
individual electrodes, but in some component space that may reflect activity distributed across sev-
eral electrodes. The diagonal matrixΛ partitions theK spatial components (i.e.,K columns ofA)
into those that contribute power positively and those that contribute power negatively to the total
sum. Since each column ofA measures the power from different sources, then by multiplying the
expression withΛ we capture the difference in power between different spatial components. As
motivation consider the task of distinguishing between imagined left versus right hand movements.
It is known that imagining a movement of the left hand reduces oscillatory activity over the motor
cortex of the right hemisphere, while an imagined right-hand movement reduces oscillations over
the left motor cortex. Each of these cortical areas will be captured by a different spatial distribution
in the EEG. If we limit the columns ofA to two, then these columns may capture the power of
oscillatory activity over the right and left motor cortex respectively. One would like one of these
two terms to contribute positively providing evidence of the observation belonging to the first class,
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while the second should contribute negatively, supporting the observationscoming from the second
class. This can be achieved with the proper choice ofΛ. Finally, the parameterC defines a convex
combination of the first-order term and the second-order term.C = 1 indicates that the discriminant
activity is dominated by the first-order features;C = 0 indicates that the activity is dominated by
second-order features, and any value in between denotes the importance of one component versus
the other.

2.4 Incorporating Prior Knowledge into the Model

Realizing that the parameters of the SOBDA model have a physical meaning (i.e., ur andar map
the sensor signal to a current-source space,vr are temporal weight on a source signal andbr can
be arranged to represent a temporal filter) it becomes intuitive for the experimenter to incorporate
prior knowledge of an experimental setup in the model. If the signal of interest is known to be in
a specific frequency band, one can fix matrixB to capture only the desired frequency band. For
example,B can be fixed to a Toeplitz matrix with coefficients corresponding to an 8Hz-12Hz band-
pass filter, then the second-order term is able to extract power in the alpha-band which is known to be
modulated during motor related tasks. It is often the case that experimenters have a hypothesis about
the temporal profile of the signal of interest, for example the P300 signal orthe N170 are known
EEG responses with a positive peak at 300ms or negative peak at 170ms and are associated with
surprise or processing of faces respectively. In such a scenario the experimenter can fix the temporal
profile parameterV to emphasize time samples around the expected location of the peak activity and
optimize over the rest of the parameters. The model also provides the ability to integrate information
from fMRI studies. fMRI has high spatial resolution and can provide locations within the brain that
may be known to participate in the processing during a particular experimentalparadigm. This
location information can be incorporated into the present model by fixing the spatial parametersur

anda to reflect a localized source (often approximated as a current dipole). The remaining temporal
parameters of the model can then be optimized.

2.5 SOBDA as a Generalized EEG Analysis Framework

The present model provides a generic framework that encompasses a number of popular EEG analy-
sis techniques. The following list identifies some of the algorithms and how they relate to the model
used in the SOBDA framework:

• SetC = 1, R= 1 and choose temporal componentv to select a time window of interest (i.e.,
setv j = 1 if j is inside the window of interest,v j = 0 otherwise). Learn the spatial filtersu.
This exactly corresponds to averaging over time and classifying in the sensor space as in Parra
et al. (2002, 2005)

• SetC = 1 and select someR > 1 and choose the component vectorsvr to select multiple
time windows of interest as in 1. Learn for each temporal window the corresponding spatial
vectorur from examples separately and then combine these components by learning a linear
combination of the elements. This corresponds to the multiple window hierarchicalclassifier
as in Gerson et al. (2006) and Parra et al. (2008)

• SetC = 1, R= D while constrainingU to be a diagonal matrix and select, separately for each
channel, the time windowvr which is most discriminative. Then train the diagonal terms of
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U resulting in a latency dependent spatial filter (Luo and Sajda, 2006a). Alternatively, in the
first step, use feature selection to find the right set of time windowsvr simultaneously for all
channels (Luo and Sajda, 2006b).

• SetC = 1,R = 1 and learn the spatial and temporal componentsu,v simultaneously. This
reduces to the rank-one bilinear discriminant as in Dyrholm and Parra (2006)

• SelectC = 1 and someR > 1 and learn all columns of the spatial and temporal projection
matrixU andV simultaneously. This results in theBilinear Discriminant Component Analysis
(BDCA)(Dyrholm et al., 2007).

• SetC = 0, K = 2 and fixB to a Toeplitz structure encoding a specific frequency band and
set the diagonal ofΛ to be [1−1]. Then learn the spatial componentA. This then reduces
to the logistic regression with a quadratic term (Tomioka et al., 2007) which is related to the
Common Spatial Patters (CSP) algorithm of Ramoser et al. (2000).

• DefineX̂ to be the concatenation ofX with itself delayed in time byτ samples, whereτ is
specified by the user, fixB to a Toeplitz structure,C = 0, andA ∈ R

2D×2, learn the matrixA.
This configuration can be related to the Common Spatio-Spectral Pattern algorithm of Lemm
et al. (2005).

2.6 Logistic Regression

To optimize the model parametersU,V,A andB we use a Logistic Regression (LR) formalism. The
probabilistic formalism is particularly convenient when imposing additional statistical properties on
the coefficients such as smoothness or sparseness. In addition, in our experience, linear LR performs
well in strongly overlapping high-dimensional data-sets and is insensitive tooutliers, the later being
of particular concern when including quadratic features.

Under the Logistic Regression model the probability that a trial belongs to class y after seeing
dataX is given by the class posterior probability

P(y|X;θ) =
1

1+e−y f(X;θ)
.

With this definition, the discriminant criterion given by the log-odds ratio of the posterior class
probability

log
P(y = +1|X)

P(y = −1|X)
= f (X;θ) ,

is simply the discriminant function which we chose to define in (1) as a sum of linear and quadratic
terms. The Likelihood of observing theN examples under this model is then given by

L(θ) = −
N

∑
n=1

log(1+e−yn f (Xn;θ)) . (2)

Training consists of maximizing this likelihood using a gradient assent algorithm.Analytic gradi-
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ents of the log likelihood (2) with respect to the various parameters are given by:

∂L(θ)

∂ur
= C

N

∑
n=1

ynπnXnvr ,

∂L(θ)

∂vr
= C

N

∑
n=1

ynπnurXn ,

∂L(θ)

∂ar
= 2(1−C)λr

N

∑
n=1

ynπnXnBB⊤X⊤
n ar , (3)

∂L(θ)

∂bt
= 2(1−C)

N

∑
n=1

ynπnX⊤AΛA⊤Xbt , (4)

where we define

πn = 1−P(yn|Xn) =
e−yn f (Xn;θ)

1+e−yn f (Xn;θ)
,

andui ,vi ,ai andbi correspond to theith columns ofU,V,A andB respectively.

2.7 Enforcing Structure on B

If matrix B is constrained to have a circular Toeplitz structure then it can be represented asB =
F−1DF, whereF denotes the orthonormal Fourier matrix withFH = F−1, and D is a diagonal
complex-valued matrix of Fourier coefficients. In such a case we can re-write Equations (3) and (4)
as

∂L(θ)

∂ar
= 2(1−C)

N

∑
n=1

ynπnXnFHDDHFX⊤
n ar .

∂L(θ)

∂di
= 2(1−C)

N

∑
n=1

ynπn

(

FX⊤
n AΛA⊤XnFH

)

ii
di .

and the parameters are now optimized with respect to Fourier coefficientsdi = (D)i,i . An iterative
gradient descent optimization procedure can be used to solve the minimization above.

This way of modelingB opens up a new perspective on the capabilities of the model. These
last two equations are equally applicable for any choice of orthonormal basisF. For example, the
columns ofF can represent a set of wavelet basis vectors. We note that a wavelet basis can be
thought of as time-frequency representation of the signal; hence, proper selection of a wavelet basis
allows for the method to not only capture the stationary power of the signal, but also the local
changes in power within theT samples of matrixX.

2.8 Regularization

Due to the high dimensional space in which the model lies and the limited samples available during
training (typically in the order of 100), a maximum likelihood estimate of the parameters will over-
train the data and have poor generalization performance. To ensure good generalization performance
additional regularization criteria are required. The probabilistic formulationof Logistic Regression
can incorporate regularization terms as prior probabilities resulting in maximum aposteriori (MAP)
estimates.
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We choose Gaussian process priors (Rasmussen and Williams, 2005) on thevarious parame-
ters of the model and ensure smoothness by choosing the proper covariance matrices. Spatial and
temporal smoothness is typically a valid assumption in EEG (Penny et al., 2005).Specifically,
the spatial components of the model (i.e., columns ofU, andA) follow a normal distribution with
ui ∼ N (0,Ku) , ai ∼ N (0,Ka) where the covariance matricesKu andKa define the degree and
form of the smoothness ofu anda. This is done through choice of covariance function: Letr be a
spatial or temporal measure in context ofX. For instancer is a measure of spatial distance between
data acquisition sensors, or a measure of time difference between two samples in the data. Then
a covariance functionk(r) expresses the degree of correlation between any two points with that
given distance. For example, a class of covariance functions that has been suggested for modeling
smoothness in physical processes, the Matérn class, is given by:

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr
l

)ν

B

(√
2νr
1

)

,

wherel is a length-scale parameter, andν is a shape parameter. Parameterl can be roughly though
of as the distance within which points are significantly correlated (Rasmussenand Williams, 2005).
The parameterν defines the degree of ripple. The covariance matrixK is then built by evaluating
the covariance function

(K)i j = σ2kMatérn(r i j )

wherer i, j denotes the physical distance of sensor-i from sensor-j, andσ2 defines the overall scale
parameter. Similarly, the Gaussian prior can be used on the columns of the temporal matrixV (i.e.,
mv∼N (0,Kv)). The Mat́ern function was preferred because it allows for a low parametrization of
the covariance matrix (two parameters define the entire covariance), but also because of the physical
and intuitive interpretation of its parameters. Specifically the parameterl is associated with the
physical concept of distance between measurements (either in space or time). This understanding
of the parameters is useful since it allows for an educated search strategy in setting the proper values
for these parameters.

Regularizing logistic regression amounts to minimizing the negative log-likelihood plus the
negative log-priors, which can be written as:

arg min
U,V,A,B,wo

−L(θ)+
1
2

(

R

∑
r=1

u⊤
r K−1

u ur +v⊤r K−1
v vr +

K

∑
k=1

a⊤k K−1
a ak +

T ′

∑
t=1

b⊤
t K−1

t bt

)

, (5)

where we ignored constants that have no effect in the optimization. The covariances of these priors
are given byKu,Ka ∈R

D×D andKv,Kb ∈R
T×T and control the smoothness of the parameter space.

In the case of the spectral regularization we use the identity matrix for the covariance,Kb = σ2I,
since the smoothness assumption does not necessarily hold in the spectral domain.

Following Rasmussen and Williams (2005) the shape parameter was chosen to be ν = 100 for
the spatial components andν = 2.5 for the temporal components. Reasonable choices for the length-
scale parameterl may be 25ms, 50ms or 100ms and in space 1cm, 2cm, and 3cm. Cross-validation
was used to select among these choices. The overall scale parametersσ were chose to be the same
for space and time components, but allowed to take on separate values for the first and second
order component. We used a line-search procedure in combination with cross-validation to select
appropriate values forσ.
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2.9 Optimization

Optimization (5) is achieved using a coordinate decent type algorithm (Nielsen, 2005) with param-
etersU,V andA,B optimized separately. We obtain analytic expressions for both the gradient and
the Hessian of the function, however, in the optimization only the gradient information is used.1 We
first optimize the parametersU andV, then optimize parametersA andB and finally perform a line
search to determine the value ofC.

Given that the optimization function is non-convex, the gradient decent method only finds local
minima. In fact, the performance of SOBDA is particularly sensitive to the starting conditions of the
spectral parameterd (parameterd enters the model when enforcing a Toeplitz structure onB, see
section 2.7.), while it is quite robust to the choice of initial conditions for the remaining parameters
U, V andA. A common technique in global optimization is to use parameter seeding and multiple
runs of the optimization procedure. For most parameters it was sufficient totry a few random initial
starting points. However, for the spectral parameter we found it importantto initialize to a frequency
band that was expected to carry useful information, for example, 8Hz-30Hz. Note that the present
learning task falls into the class of bi-convex optimization problems for which efficient algorithms
have been developed (Floudas, 1997).

3. Results

We evaluated our algorithm on 3300 simulated data sets as well as 6 real EEG recordings, includ-
ing a data set used in the Brain Computer Interface Competitions II (Blankertzet al., 2004). The
simulation aims to quantify the algorithm’s performance on a broad spectrum of conditions and
various noise levels, as well as to compare the extracted spatial, temporal and frequency compo-
nents with ground truth. The evaluation on real data set compares the cross-validation performance
of the proposed method with three popular methods used in EEG analysis and BCI. Results show
that our method outperformed these methods, decreasing the overall classification error rates from
26%-28% to 19%. For the data set of the BCI competition we also report performance results on
the independent test set and compare to the previous results.

The three methods we will compare with are Bilinear Discriminant Component Analysis (BDCA)
(Dyrholm et al., 2007), Common Spatial Patterns (CSP) (Ramoser et al., 2000), and Matrix Logistic
Regression (MLR) (Tomioka et al., 2007). For the evaluation on the 6 realEEG data sets, we further
compare our method to the trace norm regularized Matrix Logistic Regression(sMLR) (Tomioka
and Aihara, 2007). These may be considered current state-of-the art methods in EEG single-trial
analysis. In our evaluation we use a rank one approximation for the BDCA as in Dyrholm et al.
(2007). We implemented CSP following the description of Ramoser et al. (2000). We used two spa-
tial patterns (SP) and employ a logistic regression classifier on the resulting SP. In the case of MLR
we use the rank-2 approximation as described in the corresponding paper (Tomioka et al., 2007).
For sMLR we used the implementation provide in Tomioka and Aihara (2007). Since CSP,MLR
and sMLR require the data to be band-pass filtered to the frequency of interest, data sets where
filtered in the range of 8Hz-30Hz for these two methods. For our algorithm we use rank-1 for the
first-order parametersU andV with R = 1. For the spatial parameterA we setK = 2 allowing
for two spatial patterns, while we enforce a Toeplitz structure onB. We initialize the parameters

1. We discard the Hessian information because of its computational cost and the non-convexity of the optimization
function. The Hessian of a non-convex function would need to be approximated by a positive definite matrix in each
iteration.
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U,V andA by a random assignment. While we initialize the matrixB to encode a band-pass filter
in the range of 8Hz−30Hz as in the case of CSP, MLR, sMLR. As discussed in Section 2.7, en-
forcing a Toeplitz structure onB implies a representation ofB in the formB = F−1DF, whereF
denotes the orthonormal Fourier matrix withFH = F−1, andD is a diagonal complex-valued matrix
of Fourier coefficients. In our implementation, we optimize the coefficients of the matrixD instead
of B directly.

3.1 Simulated EEG Data

Simulated data for a two-class problem was generated using standard EEG simulation software
(GmbH, 2006). This software can generate electrode measurements under the assumption of dipolar
current sources in the brain. We used 3 dipoles at three different locations, with one dipole used to
generate evoked response activity, one dipole to generate induced oscillatory activity, and one dipole
to generate unrelated noise/interference. The first dipole’s componentsimulates a P300 evoked
response potential (ERP) signal. We used a half-sinusoid lasting 125ms withthe peak positioned at
300ms after trial-onset and a trial-to-trial Gaussian temporal jitter with standard deviation of 10ms.
The second dipole’s component simulates ERS/ERD in the frequency band of 8Hz to 30Hz. A
variable signal in this frequency band was generated by bandpass filtering an uncorrelated Gaussian
process. The third dipole was used to generate noise in the source spacerepresenting brain activity
that is not related to the evoked/induced activity. Electric potentials atD = 31 electrode locations
were generated corresponding to 500ms of EEG signal sampled at 100Hz(T = 50 samples). In
addition to this rank-one noise we added noise to each sensor representing other sources of noise
(muscle activity, skin potentials, inductive noise, amplifier noise, etc.). All noise sources were
white. Trials belonging to the first class (yn = +1) contained the ERP and ERD/ERS source signals
scaled appropriately to achieve a specified SNR for each data set. The second class was generated
by only including the noise with no ERP or ERD/ERS activity. A data set is specified by indicating
the SNR for the ERP component and the SNR for the ERD/ERS component. A totalof 500 trials for
each class were generated for each classification problem. The SNR of the ERP component is in the
range of -33dB to -13dB, and in the range of -22dB to -10dB for the oscillatory component. This
is a very broad range in terms of SNR. We note that -20dB translates to the signal being 10 times
smaller than the noise. ERP signals are known to be as low as−20dB so this evaluation captures
some extreme cases of SNR. We generated 35 data sets for each combinationof SNR resulting to a
total of 3300 data sets.

3.2 Performance Results on Simulated Data

The simulation results are summarized in Figure 1. The top two rows show the performance of each
of the methods as a function of the SNR. The contours of the classification performance for each
method as a function of the SNR of the first-order and the second-order components are shown. It is
clear that BDCA performance is only affected by the noise in the linear term while CSP and MLR
performance only changes as a function of the second-order component’s SNR. SOBDA however,
uses both first and second-order terms, hence performs well in data sets where at least one of the
components has reasonable SNR. This finding confirms that SOBDA performs well in a broader
range of SNRs than the other three competitive methods. The third row in 1 shows the difference in
classification performance between SOBDA vs (BDCA,CSP,MLR).
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Figure 1: Performance results on simulated data.Second and third row:Probability of correct clas-
sification (Pc) as a function of the component’s SNR. SOBDA equi-performance contours
span larger area in the SNR space than any of the other three algorithms.Third row: Dif-
ference in Pc performance between SOBDA and each of the three methodsas a function
of components SNR.

As a decomposition method, SOBDA extracts spatial, temporal and frequencycomponents. The
advantage of simulated data is that we can now compare the extracted information to ground truth.
The component recovered for one of the data sets at−22dB and−15dB is shown in figure 2. The
first row shows the extracted temporal componentU and the frequency componentd.2 We can see
that the method extracted a temporal component with a peak at 300ms which is exactly the signal
used in the simulation data design. Similarly, the frequency band extracted shows a higher amplitude
in the range of 8Hz-30Hz which is the band used to generate the oscillatory component. The spatial
components extracted and the corresponding dipole used in the model generation are shown in rows
two and three in the figure. It is clear that the topography of the extracted components is similar
for the first and second-order components. The last column of the figure captures the second-order
oscillatory component and the dipole of the rank one noise. Visual inspection allows one to give
neurological interpretations to the extracted components. Further, the results can be used as input to

2. d the vector of diagonal elements of matrixD, such thatB = FHDF
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Figure 2: Extracted components on simulated data set with first-order SNR at−22dB and second-
order SNR at−15dB. Top row: Extracted temporal weight of linear term (left) and
frequency weights of quadratic term (right).Center row:Extracted spatial weights.Bot-
tom row:Distribution of electric potentials corresponding to the three dipoles used during
stimulus generation.

a source localization algorithm, or as a guide to reduce the number of electrodes in a brain computer
interface.

3.2.1 GENERIC INITIALIZATION OF FREQUENCYCOMPONENT

In the evaluation presented above, we initialized the matrixB to encode a band-pass in the range
of 8Hz - 30Hz as it was the case for CSP and MLR. In this section we demonstrate the ability of
the proposed SOBDA in cases where no initialization information is available. Specifically, we
evaluated the SOBDA algorithm on a simulated data set using the process described above, but this
time we initialize matrixB to a high-pass filter with cut of frequency at 1 Hz. High pass filtering
is a standard preprocessing steps in EEG that removes the DC power. Figure 3 shows the temporal
and frequency component obtained from SOBDA. As it is evident from the figure, the resulting
frequency component has higher weights for frequencies in the band 8Hz-30Hz, which is the band
used to generate the power component in the simulated data. Thus the proposed method is able
optimize the frequency band even in cases where we use a generic initialization of the matrixB.
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Figure 3: Discriminant coefficients on simulated data set with first-order SNRat −22dB and
second-order SNR at−15dB. The Fourier coefficients were initialized to a high-pass
filter with cut off frequency at 1 HzLeft figure: Extracted temporal weight of linear
term.Right figure:Magnitude of the Fourier coefficients inD, such thatB = FHDF.

3.3 Human Subject EEG

To evaluate the performance of the proposed method on real data we firstapplied the algorithm to an
EEG data set that was made available through The BCI Competition 2003 (Blankertz et al., 2004,
Data Set IV). EEG was recorded on 28 channels for a single subject performing “self-paced key
typing”, that is, pressing with the index and little fingers corresponding keys in a self-chosen order
and timing. Key-presses occurred at an average speed of 1 key per second. Trial matrices were
extracted by epoching the data starting 630ms before each key-press. Atotal of 416 epochs were
recorded, each of length 500ms. For the competition, the first 316 epochswere used for classifier
training, while the remaining 100 epochs were used as a test set. Data was recorded at 1000Hz with
a pass-band between 0.05 and 200Hz, then down sampled to 100Hz samplingrate.

For this experiment, the matrixB was fixed to a Toeplitz structure that encodes a 10Hz-33Hz
bandpass filter and only the parametersU,V,A andw0 were trained. The number of columns of
U and V were set toR = 1 and the number of columns forA was set toK = 2. The selection
of these parameters is motivated by the task at hand. Specifically, we are looking for one ERP
components associated with thereadinesspotential that is, the slow increase in amplitude before
an actual hand movement. In the case of the second-order term involving the parameterA we set
K = 2 because we are interested in finding the modulation of oscillatory activity associated with
the different movements of the movements of the hands. Hands and fingers are represented in
somato-sensory cortex covering different areas and will hence modulate activity in distinct spatial
profiles. In order to detect the power difference of these two components we set,Λ = [1,0;0,−1],
in agreement with the original approach of Wolpaw et al. (2002).

The temporal filter was selected based on prior knowledge of the relevantfrequency band. This
demonstrates the flexibility of our approach to either incorporate prior knowledge when available
or extract it from data otherwise. Regularization parameters where chosen via a five fold-cross
validation procedure as described in Section 2.8.

Benchmark performance was measured on the test set which had not been used during either
training or cross-validation. The number of misclassified trials in the test set was 13 which places
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Figure 4: Results on human EEG for BCI.Top row: Cross-validation performance shown as ROC
curve with area under the curve of 0.96 for the benchmark data set (left)and 0.93 for the
independent test set (right). There were a total of 13 errors on unseen data, which is less
than any of the results previously reported.Bottom row: Scatter plot of the first-order
term vs second-order term of the model, on the training and testing set for the benchmark
data set (’+’ left key, and ’o’ right key). It is clear that the two types of features contain
independent information that can help improve the classification performance.

our method in a new first place ranking, based on the results of the competition(Blankertz et al.,
2004). The receiver-operator characteristic curve (ROC) for cross-validation and for the indepen-
dent test set are shown in Figure 4. The Figure also shows the contribution of the linear and quadratic
terms for every trial for the two types of key-presses.

To further validate our method we performed our own EEG recordings asking subjects now to
respond with the left and right index fingers. We obtain five more data sets with the same number
of electrodes. For each data set and each algorithm we performed 20 repetitions of a five-fold
cross-validation procedure. Each repetition uses a different partitioning of the data. For the cross-
validation evaluation of these data sets, we initialized (but did not fix) matrixB to a Toeplitz structure
that encodes a 10Hz-33Hz bandpass filter and trained over all parameters U,V,A,B andw0.3 The
number of columns ofU andV were set to 1, where two columns were used forA. This corresponds
to the parameter configuration ofR= 1,K = 2 andT ′ = T.

3. We remind the reader that in the actual implementation we optimize the Fourier coefficientsD instead of matrixB
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Figure 5: Estimate of the spread of the probability of correct identification from multiple cross-
validation repetitions. Lines show lower quartile, median, and upper quartile values for
each of the methods on all data sets.+ symbols represent outliers.

Figure 5 shows performance distribution across these bootstrap repetitions using a standard
boxplot. The mean performance and standard deviation of each data set and algorithm are summa-
rized in table 1. The reduction in the overall classification error is from 26%-28% to 19%. In the
mean, SOBDA outperforms competitive methods in five out of the six data sets, while achieving a
comparable performance on data set 2. The performance optained with SOBDA is comparable to
performance gains that may be obtained by combining existing first and second order methods (e.g.,
CSP and BDCA—data not shown).

Figure 6 shows the extracted components for 3 of the 6 data sets. We note that in all three
cases the extracted components follow the general shape of the pre-motoror readiness potential
(a.k.a. Bereitschafts potential) which known to precede a voluntary muscle movement. In addition,
for two of the data sets, the frequency weightings suggest that alpha band activity also provides
discriminant information for this task. This finding is consistent with the changes in theµ rhythm—
that is, alpha-band activity localized over the motor cortex and associated with motor planning and
execution. This demonstrates the ability of our method to learn first and second-order features
that are consistent with, and can be linked to existing knowledge of the underlying neuronal signal
generators.
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Experiment BDCA CSP MLR SOBDA sMLR
1 0.84± 0.011 0.8± 0.017 0.82± 0.011 0.88±0.013 0.78± 0.0089
2 0.69± 0.037 0.84±0.017 0.77± 0.028 0.83± 0.021 0.82± 0.012
3 0.63±0.018 0.62± 0.016 0.55± 0.02 0.63±0.017 0.62± 0.015
4 0.72± 0.021 0.78± 0.015 0.77± 0.015 0.79±0.018 0.76± 0.021
5 0.64± 0.018 0.7± 0.022 0.7± 0.011 0.78±0.013 0.73± 0.0097
6 0.93± 0.01 0.7± 0.016 0.72± 0.01 0.94±0.0089 0.68± 0.0056

Mean 0.7412 0.7388 0.7213 0.8068 0.7316

Table 1: Probability of correct identification for the six EEG data sets obtained by each of the
four methods. The last row indicates the percentage of decrease in the classification error
achieved by SOBDA compared to each one of the methods.± range indicates one standard
deviation for results of multiple cross-validation repetitions.

4. Rank-Selection

In our results, we selected the rank for the parametersU and V to be one (i.e.,R = 1) and the
rank for the parameterA to be two (i.e.,K = 2). The selection of these parameters was motivated
in Section 3.3. Specifically, in the current experimental paradigm, we are looking for one ERP
components associated with thereadinesspotential, that is, the slow increase in amplitude before
an actual hand movement. The search for a single component suggests setting R= 1, one spatio-
temporal component. In the case of the second-order term involving the parameterA we set the
K = 2 because we are interested in finding two components corresponding to the two different
spatial profiles of the two classes. To validate our selection for these parameters, we preformed
repeated cross-validation evaluation of our algorithm for different configurations of the parameters
RandK. The parameterRwas tested for values{1,2,3,4} while parameterK was tested for{2,4}.
The results of this evaluation are summarized in Figure 7. The Figure 7.a shows the mean cross-
validation performance of the SOBDA algorithm across all real-EEG data sets for all configurations
of the parametersRandK. It is evident from this figure that configurationR= 1, K = 2 corresponds
to the best selection for these parameters on average for these data sets.The Figure 7.b shows
the cross-validation performance of the SOBDA algorithm for each data set separately and for all
configuration of the parametersR andK. The cross-validation procedure can be used to determine
or validate the configuration of parametersR andK in cases were no prior knowledge is available
about the signal of interest.

5. Conclusion

In this paper we presented a new method called Second-Order Bilinear Discriminant Analysis
(SOBDA) for analyzing EEG signals on a single-trial basis. The method combines linear and
quadratic features thus encompassing and extending a number of existing EEG analysis methods.
We evaluated the SOBDA algorithm in both simulated and real human EEG data sets. We show a re-
duction in the classification error on human EEG when comparing our method to the state-of-the-art.
The results on simulated data characterize the operational range of these algorithms in terms of SNR
and shows that the proposed algorithm operates well where other methodsfail. The parametrization
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Figure 6: Extracted components in EEG for data sets 6, 4, and 3.Left: Temporal weights of linear
component (first column) and and frequency weights of quadratic component (second
column). Right: Spatial weights of linear component (third column) and two spatial
weights for second-order spatial components (fourth and fifth column).
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Figure 7: Cross-validation performance of SOBDA on the six real-EEG data sets used in the evalu-
ation, at various configuration of the parametersR andK. (a) The mean cross-validation
performance across data sets at various configuration of the parametersRandK.(b) Cross-
validation performance for each of the data sets at various configuration of the parameters
R andK.
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of the discriminant criterion is intuitive, allowing one to incorporate prior knowledge as well as to
derive spatial, temporal, and spectral information about the underlying neurological activity.

6. Derivations

In this section we derive the analytic gradient formulas of the negative log-likelihood function de-
fined in (2). In general the gradient with respect to any of the variablescan be expressed as:

∂L(θ)

∂θ
= −

N

∑
n=1

∂ log(1+e−yn f (Xn;θ))

∂θ

= −
N

∑
n=1

1

1+e−yn f (X;θ)

∂{1+e−yn f (Xn;θ)}
∂θ

=
N

∑
n=1

yn
e−yn f (X;θ)

1+e−yn f (X;θ)

∂ f (Xn;θ)

∂θ
,

Now one has to take the specific derivatives with respect to each of the variables inθ is:

The gradient with respect tour , therth column ofU.

∂{ f (Xn;θ)+w0}
∂ur

= C
∂{TraceU⊤XnV}

∂ur

= C
∂{∑R

r ′=1 u⊤
r ′ Xnvr ′}

∂ur

= CXnvr .

The gradient with respect tovr , therth column ofV is:

∂{ f (Xn;θ)+w0}
∂vr

= C
∂{TraceU⊤XnV}

∂vr

= C
∂{∑R

r ′=1 u⊤
r ′ Xnvr ′}

∂vr

= Cu⊤
r Xn .

The gradient with respect toar , therth column ofA is:

∂{ f (Xn;θ)+w0}
∂ar

= (1−C)
∂{TraceA⊤(XnB)(XnB)⊤A}

∂ar

= (1−C)
∂{∑K

r ′=1 λr ′a⊤r ′ (XnB)(XnB)⊤ar ′}
∂ar

= 2(1−C)λr(XnB)(XnB)⊤ar ,
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The gradient with respect tobr , therth column ofB is:

∂{ f (Xn;θ)+w0}
∂br

= (1−C)
∂{TraceΛA⊤(XnB)(XnB)⊤A}

∂br

= (1−C)
∂{TraceB⊤X⊤

n AΛA⊤XnB}
∂br

= (1−C)
∂{∑K

r ′=1 b⊤
r ′ X

⊤
n A⊤ΛA⊤Xnbr ′}
∂br

= 2(1−C)(X⊤
n AΛA⊤Xn)br .
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