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Spectrum separation resolves partial-volume effect of MRSI
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ABSTRACT: Magnetic resonance spectroscopic imaging (MRSI) is currently used clinically in conjunction with anatomical

MRI to assess the presence and extent of brain tumors and to evaluate treatment response. Unfortunately, the clinical utility of

MRSI is limited by significant variability of in vivo spectra. Spectral profiles show increased variability because of partial

coverage of large voxel volumes, infiltration of normal brain tissue by tumors, innate tumor heterogeneity, and measurement

noise. We address these problems directly by quantifying the abundance (i.e. volume fraction) within a voxel for each tissue

type instead of the conventional estimation of metabolite concentrations from spectral resonance peaks. This ‘spectrum

separation’ method uses the non-negative matrix factorization algorithm, which simultaneously decomposes the observed

spectra of multiple voxels into abundance distributions and constituent spectra. The accuracy of the estimated abundances is

validated on phantom data. The presented results on 20 clinical cases of brain tumor show reduced cross-subject variability.

This is reflected in improved discrimination between high-grade and low-grade gliomas, which demonstrates the

physiological relevance of the extracted spectra. These results show that the proposed spectral analysis method can improve

the effectiveness of MRSI as a diagnostic tool. Copyright # 2008 John Wiley & Sons, Ltd.
KEYWORDS: magnetic resonance spectroscopic imaging (MRSI); non-negative matrix factorization (NMF); tumor grade

classification; brain tumor
INTRODUCTION

Altered metabolic activity in cancerous tissue leads to
abnormal metabolite concentrations, which are reflected
in abnormal spectral profiles recorded with magnetic
resonance spectroscopic imaging (MRSI) (1–3). Unfor-
tunately, the significant variability of in vivo clinical
spectra limits the diagnostic potential of MRSI. Our
hypothesis is that the mixture of different tissue types
within a given voxel – also called partial-volume effect –
leads to increased variability in large voxel spectra
compared with spectra obtained from homogeneous
tissue. The resonance spectrum of such a mixed voxel can
be described as a linear combination of spectra from
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different constituent tissue types. To validate this
hypothesis, we aim to show that spectral variability
can be reduced by representing each voxel’s spectrum as a
linear combination of constituent tissue types, each with a
consistent spectrum across many voxels. This modeling
process, which we here call ‘spectrum separation’,
estimates the abundance (or partial volume fraction) of
each tissue type within each voxel as illustrated in Fig. 1.
Specifically, the model explains the observed spectra, X,
as a product of abundances, A, with constituent tissue
spectra, S, and additive measurement noise, N:

X ¼ ASþ N (1)

The columns in matrix A represent the abundance of the
constituent tissue, and the rows in matrix S represent
their corresponding spectra. The abundance matrix A has
M columns (one for each constituent) and N rows (one for
each voxel). X and S have L columns (one for each
resonance band). Eqn (1) represents a linear super-
position, which accurately reflects the superposition of
the resonance signal under the assumption of a
homogeneous field. This holds for absorption spectra,
i.e. the real values of the Fourier transformation of the
observed free induction decay (FID) (4). There are two
types of methods for performing this factorization:
NMR Biomed. 2008; 21: 1030–1042



Figure 1. Sketch of spectrum separation approach. Spectra of multiple voxels, X, are
simultaneously analyzed and decomposed into constituent spectra, S, and the correspond-
ing abundance distributions, A. The extracted constituent spectra can be identified by
comparing them with known spectra of individual tissue types (normal tissue and tumor
tissue in this study).
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model-based methods (5–7) and statistics-based methods
(8,9). Model-based methods such as variable projection
(VARPRO) (10) and LCModel (11) impose an explicit or
parametric model on S with prior biochemical knowl-
edge, and consider one voxel at a time. The optimal
parameters and abundances are chosen such that eqn (1) is
satisfied with the smallest possible noise N. Although
these model-fitting methods can quantify metabolite
concentrations from the MRS data, they are also very
sensitive to noise and often require assumptions on the
biochemical composition of the tissue. By analyzing
individual spectra, these methods fail to exploit the
potential benefits of averaging that implicitly occurs
when multiple spectra are simultaneously fitted. Statistics-
based techniques, such as principal component analysis
(PCA) (12–14) and independent component analysis
(14–16), instead use all spectra simultaneously to extract
constituent components. Thus, they can potentially
exploit the statistical structure of multi-voxel spectra to
solve for all rows in eqn (1) simultaneously. Instead of
making explicit assumptions about the structure of S,
these techniques assume statistical properties such as
co-variation and independence. One of the problems with
these earlier approaches, however, is the common
assumption that constituent spectra are orthogonal, as
there are many cases where the constituent spectra,
because of overlapping peaks (e.g. lipid and lactate), can
be highly correlated, and therefore an orthogonality or
independence assumption is incorrect.

We previously proposed (17) the use of a statistics-
based algorithm, called the non-negative matrix factor-
ization (NMF) algorithm by Lee and Seung (18), for
performing the factorization in eqn (1). This algorithm
exploits the fact that both abundances and spectra can
only take on positive values. Negative values in the data
are ascribed to the noise term. The advantage of the
resulting estimation process is that no reference spectra
Copyright # 2008 John Wiley & Sons, Ltd.
are required. Instead, the algorithm can adapt to the
heterogeneous spectra observed for different tumors.
When applied to brain MRSI of patients with tumors, the
algorithm extracts spectral profiles and their spatial
distributions consistent with different tissue types such as
necrotic and proliferative regions, normal brain, and skull
(17).

The goal of this study was to demonstrate the
physiological relevance of the NMF algorithm for routine
clinical brain tumor scans. First, we validated the physical
interpretation of abundances, A, as volume fraction in a
phantom study by comparing the extracted abundance
values with the expected values. Next, to confirm the
physiological and clinical relevance of the extracted
spectra, S, we correlated the analysis results with
pathologically proven tumor grades from 20 patients
and showed an improved correlation of choline (Cho) and
N-acetyl aspartate (NAA) peak areas with tumor grade.
The proposed decomposition of the data can be expected
to coincide with constituent spectra and abundance only if
the imaging process and spectral analysis satisfy the
linear model [1]. In practice, and in particular for our
clinical scans, field inhomogeneities lead to non-linear
distortions of the data such as phase distortions and
frequency shift. This study therefore explores the limits of
the linear model for varying signal-to-noise ratio (SNR)
on simulated data, and compares these limits with the
SNR of 1.5 T routine clinical scans.

A problem of multi-voxel methods is that they assume
constituent spectra to be the same across voxels, thus
requiring careful correction of deviations such as phase
errors and frequency shifts. In addition, known tumor
heterogeneity may lead to spectra that vary across voxels.
We intend to use the proposed multi-voxel analysis
method to capture the variability that is due to volume
fraction, and consequently improve the diagnostic
potential of MRSI despite known tumor heterogeneity.
NMR Biomed. 2008; 21: 1030–1042
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EXPERIMENTAL

Data acquisition protocol

This study analyzed data from the routine clinical patient
population at Memorial Sloan-Kettering Cancer Center
(MSKCC). Institutional review board waiver was
obtained to retrospectively analyze clinical proton MRSI
data and examine the medical records. Thirty-two
patients with pathologically proven brain gliomas were
evaluated. Of these, we selected 20 MRSI scans with
sufficient data quality (see section on voxel selection).
The MRSI data were collected using a 1.5 T GE scanner
(General Electric Medical Systems, Milwaukee, WI,
USA) with a long echo time (TE¼ 144ms, TR¼
1000ms) three-dimensional PRESS sequence with water
suppression. The voxel size of the data acquired with
MRSI ranges from 1 cm3 down to 0.5 cm3. The acquisi-
tion or phase-encoding volume typically covers 8� 8�
8 voxels, which results in 8.5min scanning time at a 1 cm3

nominal voxel size. Pre-contrast fluid-attenuated inver-
sion recovery (FLAIR) images (3mm thickness/0mm
spacing) were used as scouts for placement of the MRSI
excitation volume. FLAIR and T1 post-contrast MR
images were collected in alignment with the MRSI
study so that they could be combined for diagnosis and
tumor segmentation. The final pathological diagnoses
were retrospectively confirmed for all patients. Of the
20 patients (all of whom had received some form of
treatment before the scan), 10 had low-grade (WHO grade
I–II) gliomas (LGGs) including WHO grade II astro-
cytoma, oligodendrioglioma, and oligoastrocytoma, and
the other 10 had high-grade (WHO grade III–IV) gliomas
(HGGs) including anaplastic astrocytoma, anaplastic
oligodendrioglioma, and glioblastoma. This categoriz-
ation was used as truth data for the classification.
Data preprocessing

The GE spectrum analysis software (Functool) does not
output the computed spectra numerically. For our analysis
it was therefore necessary to redevelop the corresponding
data-conditioning routines starting with the raw time-
domain data (GE P-files). These routines, written in
MATLAB, filtered residual water signal, performed phase
correction, and corrected for frequency shifts due to an
inhomogeneous magnetic field. The results of this pro-
cessing are equivalent to those obtained with Functool.
The MRSI data were preprocessed automatically and

identically for all datasets. This resulted for each patient
scan in 8� 8� 8 (N¼ 29) or 16� 8� 8 (N¼ 3) spectra
with 1024 points covering 1 kHz spectral width.

Water filtering. The most critical step in preprocessing
is to remove the low frequency signals due towater, which
tend to overwhelm, in particular, Cho and creatine (Cr)
Copyright # 2008 John Wiley & Sons, Ltd.
spectral lines. We used a third-order Butterworth high-
pass filter with 75Hz cutoff applied forward and
backward in time to avoid phase distortions (MATLAB
filtfilt function).

Zero filling. The time-domain FID data typically con-
tain 512 samples at 1 kHz sampling frequency. To
increase spectral resolution, we increased the length of
the signal by appending zero values to a length of 1024.

Line broadening. To reduce the effect of noise, one
can smooth the spectrum by windowing the data in the
time domain. We used exponential windowing, resulting
in 3Hz line broadening, which compromises between
noise and resolution.

Frequency decomposition. After these steps, the
frequency-domain data were recovered from the three-
dimensional phase-encoded FID time-domain sequences
with a four-dimensional Fourier transformation. The only
remaining step that has to be validated is a potential
phase-encoding offset, which would manifest itself in
spatial misalignment of the spectra with the FLAIR images.

Phase correction. Phase distortions are particularly
problematic, as they will lead to negative values in the
absorption spectra, violating the main assumption of the
NMF algorithm. More importantly, if the phase is not
corrected to give the same effective phases across voxels,
the assumption that the constituent spectra are the same
acrossvoxels isviolated.Toensurepositive spectra, onehas
to determine a separate phase factor for each voxel. The
noise levels and phase distortions due to an inhomogeneous
field are significant in these clinical data.Moreover, at long
TE values, an inverted lipid/lactate peak at 1.3 ppmmay be
present with a 1808 phase that cannot be corrected. So,
instead of the conventional zero-order and first-order phase
correction, we opted to use the absolute value of the
spectrum rather than the real (absorption) spectrum.

Frequency alignment. The spectrum separation
method operates simultaneously on multiple spectra
and assumes that the constituent spectra coincide across
voxels. To determine potential frequency shifts, we
cross-correlated the resulting absolute spectra and
adjusted frequency shifts individually for each voxel
by no more than 0.3 ppm to maximize correlation in the
frequency range 1.6–3.6 ppm. This method worked well
on the present data with SNR >4 dB. Baseline correction
or modeling was not required.
Spectrum separation with NMF algorithm

The proposed model of eqn (1) interprets matrix A as
abundance, which therefore only takes on non-negative
values. In addition, as the constituent spectra, S, represent
NMR Biomed. 2008; 21: 1030–1042
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amplitudes of resonances, in theory the smallest
resonance amplitude is zero, corresponding to the absence
of resonance at a given frequency. The factorization of
eqn (1) is therefore constrained by, A� 0 and S� 0. The
basic idea of the NMF algorithm is to maximize the
likelihood of observing X given non-negative A and S.
Assuming Gaussian noise,N, the log-likelihood is simply
a quadratic function which is to be maximized with
respect to A and S subject to the positivity constraint. A
corresponding gradient ascent algorithm is converted into
a multiplicative update algorithm by the appropriate
choice of gradient step sizes (17,28). After preprocessing,
the absolute spectra were analyzed using the NMF
algorithm (17). This process extracts spectra directly from
the data, and hence no reference spectra are required. The
only model parameter of NMF that needs to be
determined is the dimensionality of the matrices A and
S, namely the number of constituent spectra to recover.
Conventional subspace analysis (PCA) was used to
determine the number of constituents (29). On the present
data, PCA suggested the use of at most two or three
spectra. Whenever a third constituent was used, it
represented primarily residual water (18 out of 20).
When only two constituent spectra were used, water
activity was ascribed to residual noise. In the cases with
clear lactate/lipid peaks, the third constituent corresponds
to high-lipid tumor region (2 out of 20), provided that the
corresponding frequency range is included. In all cases,
the spectrum with highest Cho-to-NAA index (CNI) was
assigned to tumor tissue, and the spectrum with lowest
CNI was assigned to normal tissue. Using two rather than
three spectra had little effect on the classification of tumor
type and tumor location. For simplicity, we will report
here results for two constituent spectra.
Voxel selection

The specific selection of voxels will affect the results of
spectrum separation using the NMF algorithm. In
particular, inclusion of noisy or distorted spectra (due
to poor shimming) has a detrimental effect. In this study,
we selected rectangular volumes within the excitation
box. Only slices (horizontal, coronal and sagittal) that
included obvious metabolite resonance peaks in the
affected brain area were selected. Peak height had to
be 4 dB above background for at least one voxel in the slice
within the frequency ranges covering Cho (3.34–3.14 ppm),
Cr (3.14–2.94 ppm), and NAA (2.22–1.82 ppm). Examples
of spectra that would have been included or excluded are
shown in Fig. 2. Also excluded were slices that intersected
the skull with obvious distortions or lipid content. The
separation algorithm requires multiple voxels for extrac-
tion of meaningful spectra, we only used those ‘high-
yield’ datasets with at least 10% of voxels satisfying the
above criteria. Of the 32 datasets, four with radiation
necrosis and eight with ‘low yield’ were excluded, which
Copyright # 2008 John Wiley & Sons, Ltd.
resulted in 20 datasets for further analysis. Examples of
the datasets with selected voxels are shown as colored
areas in Fig. 3 (excitation box delineated in white).

To compare the spectra extracted with the NMF
algorithm with conventional analysis, we also selected
representative raw voxel spectra obtained following
current conventional practice. This selection was based
on FLAIR intensity enhancement and Cho/NAA
peak-area ratios. Again, only spectra with sufficient
SNR were selected (>4 dB). Spectra from areas with
obvious intensity enhancements were selected as tumor
spectra. For normal brain, we selected only voxels far
removed (>2 cm) from areas of increased intensity.
Because signal quality varies among different datasets,
different numbers of voxels were selected for normal
(n¼ 17� 11) and tumor (n¼ 15� 12) spectra for
different datasets. Within this selection, we also chose
one example with an extreme Cho/NAA peak-area ratio
as an ‘extreme’ spectrum. This corresponds to current
clinical practice, which considers the most extreme Cho/
NAA ratio as an indicator of tumor malignancy. Finally, for
each subject, ‘average’ spectra were computed as the mean
across these selected voxels for tumor and normal tissue.
Spectrum varability

To quantify the reduction in variability, we measured the
coefficient of variation (CV) of the Cho/NAA ratio. The
statistic was computed for Cho and NAA on the basis of
maximum peak areas of the extracted spectra. To
normalize for the arbitrary scale of the spectra, we used
the Cr peak area. Specifically, the peak area of Cr, Cho,
and NAA were scaled to sum to one. Hence, NAA and
Cho were given in arbitrary units that are insensitive to
scale. Note that this operation preserves linear separ-
ability of the data (separating lines in Fig. 4 remain lines
for any such scaling transformation).
Overlay construction

To present the result of the NMF separation algorithm, we
merged the FLAIR image intensity with the abundance
estimates, A, encoded in color. Examples of this
visualization method are shown in Fig. 3 and are
compared with the conventional spectral display. In this
overlay, the abundance of the tumor spectrum for a given
voxel is represented as a color between blue (no tumor)
and red (tumor). Color saturation shows how well the
spectrum X is represented by the two constituents S
[measured as goodness of fit, 0� r2� 1, with
r2 ¼ 1�

P
ðX � ASÞ2=

P
X2], and is hence an indirect

indication of SNR. Color therefore is only visible in the
region of interest inside the signal acquisition volume
(white PRESS box). Brightness represents FLAIR
intensity as in a conventional MR image.
NMR Biomed. 2008; 21: 1030–1042
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Figure 2. Linearity validation. Top graph in the center panel shows the fit of the linear model to simulated data for
varying noise levels. Accuracy is measured as R2 value capturing how well the linear model approximates the data (R2¼1
corresponds to a perfect match). Black dots represent the mean R2 from multiple repeats (N¼100) with random noise.
Shading around the dots are the 95% confidence intervals. Bottom graph in the center panel shows the distribution of
data quality for the 32 available clinical datasets. The datasets are divided into two groups depending on the number of
useful voxels, i.e. 24 datasets with a ‘high yield’ of useful voxels (four datasets with radiation necrosis were excluded for
further analysis) and eight with a ‘low yield’ of voxels (see section on voxel selection). Evidently these two datasets also
differ in SNR. In particular, all useful datasets have an SNR above 4 dB, suggesting that the linear model may be sufficient
with mean R2¼ 0.85. The ‘low-yield’ datasets were excluded from the current study. Left panel shows two examples of
spectra from ‘low-yield’ datasets with SNR below 4dB. Right panel shows two examples of spectra from ‘high-yield’
datasets with SNR above 4 dB.
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To validate this abundance-based overlay, we selected
the central slice from each of the 20 cases, and a
neuroradiologist labeled the voxels in the corresponding
slice as ‘normal’, ‘tumor’, ‘HGG’, or ‘LGG’ on the basis
of anatomical MRI information (pre-contrast sagittal and
axial T1-weighted, axial T2-weighted, axial FLAIR, axial
diffusion-weighted, and post-contrast T1-weighted
images in axial, sagittal, and coronal planes). These
labels were then digitized and used as ‘truth data’ for the
receiver operating characteristic (ROC) analysis (30).
Copyright # 2008 John Wiley & Sons, Ltd.
Phantom study

To empirically validate the accuracy of the abundance
estimates, we built a cylindrical phantom (Plexiglas) with
two semi-cylindrical chambers, which were filled with
solutions containing Cr and NAA at concentrations
corresponding to ‘‘normal brain tissue’’ (NAA,
10.43mM; Cr, 7.49mM) and ‘‘tumor tissue’’ [NAA,
5.21 (¼10.43/2) mM; Cr, 14.98 (¼7.49� 2) mM]. Note
that, with this choice, we expected a factor 4 difference in
NMR Biomed. 2008; 21: 1030–1042
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Figure 3. Comparison of conventional MRSI spectra (left) with the results of spectrum separation (center, right).
The left panels show the conventionally processed MRSI multi-voxel spectra overlaid on to FLAIR images, with areas
of hyperintensity indicating the abnormal region. The white box represents the region of radiofrequency excitation,
which is smaller than the field of view ofMRSI acquisition. The center panels show the tumor tissue abundancemap
– column in matrixA corresponding to the tumor spectrum –merged with the FLAIR image: the redder the area, the
more abundant the tumor tissue. For a smooth spatial distribution, this color map has been interpolated between
voxels at the same resolution as the FLAIR image. The right panels show the extracted constituent spectra
corresponding to the normal tissue and tumor tissue. The constituent tumor spectrum revealed a typical pattern of
high Cho concentration and low NAA concentration.
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the Cr/NAA ratio between the spectra of the two
chambers. Cho was not included because of poor stability
in the solution. FLAIR and MRSI data were obtained
ensuring partial coverage of voxels across the boundary of
the chambers as shown in Fig. 5. Data were recorded
using the same acquisition parameters as in the clinical
scans and were processed in the same fashion, resulting in
spectra with an SNR of 11.5� 0.7 dB (n¼ 5). All voxels
inside the excitation box were selected to validate the
accuracy of the abundance estimates. A sigmoid
function was used to model the relationship between
Copyright # 2008 John Wiley & Sons, Ltd.
real abundance and the estimated abundance:
f ðxÞ ¼ ½1þ expð�c� b xÞ��1

, where x represents the
real abundance and f represents the abundance estimates.
95% confidence intervals were then calculated to quantify
the accuracy of the abundance estimates using standard
methods (25–27).

Simulation Studies

Simulated data for linearity validation. Non-
linear distortions originating from an inhomogeneous
NMR Biomed. 2008; 21: 1030–1042
DOI: 10.1002/nbm



Figure 4. Validation of extracted spectra, S, with pathologically proven tumor grades. (a) Cho vs
NAA peak areas (in arbitrary units) for voxel spectra from all 20 patients, taken from the individual
MRSI voxels located in the regions of FLAIR intensity enhancement and surrounding normal
appearing areas before the NMF analysis. Points indicate maximum peak areas for spectra over
the following frequency ranges: Cho 3.34–3.14 ppm and NAA 2.22–1.82 ppm. The colored
symbols are for spectra from tumor voxel in the area of intensity enhancement. There is significant
overlap in voxel spectral pattern between the HGG, LGG, and normal appearing regions. Dashed
blue and green lines show the Cho/NAA ratio of 1 and 3, respectively. (b) Averaged Cho and NAA
concentrations across voxels for each individual patient. Averaging across voxels reduces noise,
but significant overlap remains. (c) Cho and NAA concentrations of the extreme spectra (see
section on voxel selection) from all 20 patients. Compared with (b), the overlap is reduced and
better separation is achieved. (d) The same type of plot of the constituent tumor and normal tissue
spectra from all 20 patients after the NMF analysis. As with the averaged spectra, each of the
20 cases contributes two points corresponding to the extracted spectrum for normal and tumor
tissue. The Cho–NAA patterns of the normal spectra are well separated from those of the tumor
spectra. The separation is sufficient to distinguish tumor from normal tissue and HGG from LGG
(Table 1) andmatches very well with the clinical criteria based on Cho/NAA ratio (dashed blue and
green lines).
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field and the use of absolute spectra may lead to a
violation of the linear model of eqn (1). Thus we tested
the validity of the linear model assumption on simulated
data (6,19). Idealized FID sequences were generated in
the time domain (N¼ 512) as the sum of K¼ 3
exponentially damped complex sinusoids, which corre-
sponded to the specific resonance peaks for H2O, NAA
and Cho:

Sn ¼
XK

k¼1

ake
i’k eð�dkþi2pfkÞtn ; n ¼ 1; . . . ;N ð2Þ

where sn represents the n-th data point of the simulated
signal, i represents the imaginary unit, the parameters ak,
Copyright # 2008 John Wiley & Sons, Ltd.
wk, dk, and fk denote the amplitude, phase, damping factor,
and frequency, respectively, and tn¼ nDt, with the
sampling interval Dt.

Three 8� 8 slices of simulated MRSI data
containing H2O, NAA, and Cho were generated. One
slice had a Cho/NAA ratio of 2, the second had a Cho/
NAA ratio of 1/2, and the third represented a mixed
spectrum generated by adding the first two slices together.
In order to mimic the real situation, uniform-distributed
phase shifts (�p) and frequency shifts (�5Hz, one
linewidth) were introduced variably from voxel to voxel
when generating the time-domain data. This is compar-
able to previous simulation studies, which used phase
shifts in the range p/4 to p/3 and frequency shifts of 1/2 to
NMR Biomed. 2008; 21: 1030–1042
DOI: 10.1002/nbm



Figure 5. Results of spectrum separation on phantom study (display same as in Fig. 3). The two chambers were
filled with Cr and NAA in a water solution at concentrations corresponding to ‘‘tumor tissue’’ (upper chamber) and
‘‘normal brain tissue’’ (lower chamber). The overlay in the center panel shows a goodmatch between the estimated
abundance A and the actual volume fraction (see also Fig. 6). This indicates that the method correctly decomposes
the observed data into the constituent spectra corresponding to the different solutionswith their specificmetabolite
concentrations. The Cr/NAA peak-area ratios for the two spectra differ by a factor of 4 as expected.
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2 linewidth (20,21). Various levels of additive Gaussian-
distributed white noise were introduced to evaluate the
robustness of the preprocessing algorithm and resulting
non-linearity as a function of SNR. Applying the inverse
fast Fourier transformation brings the frequency data to
the time domain. We applied to this simulated data the
same preprocessing algorithms as were used on
the clinical data. After preprocessing, the spectra from
the first two slices were added together (assuming a linear
model, we denote this Smodel) and compared with the
spectrum from the third slice (which was generated
directly from a mixed spectrum, hence we call this Sdata).
The R2 value was used to measure how well the linear
addition model fits the mixed data. It is defined here as
R2 ¼ 1�

P
ðSdata � SmodelÞ2=

P
S2data. For each SNR

level, R2 values from 100 repetitions were used to assess
the mean and 95% confidence intervals. The results of this
analysis for varying SNR are shown in Fig. 2.

Simulated data for abundance estimates. We also
used simulated data to explore the accuracy of the
abundance estimates by testing the relationship between
the actual volume fractions and the abundance estimates
on simulated data. Two 8� 8 slices of simulated MRSI
data containing H2O, NAA, and Cho were generated as
described above, with one slice corresponding to a Cho/
NAA ratio of 2, and a second slice to a ratio of 1/2. The
third slice was generated by linearly mixing the first two
slices with various volume fractions (selected at random)
for each voxel. To assess the variance in estimation, this
simulation was repeated 100 times with different
randomly selected volume fractions and Gaussian noise
at 11.5 dB. The simulated data were preprocessed and
submitted to the NMF algorithm. The abundance
estimation matrix, A, was compared with the predefined
volume fractions to evaluate the accuracy of the
abundance estimates.
Copyright # 2008 John Wiley & Sons, Ltd.
Simulated data for performance evaluation. To
overcome the limitation of a small sample size, we
simulated LGG and HGG cases as above with mean Cho/
NAA ratios of 2 and 2.3, respectively (22–24). Variability
across subjects and voxels was modeled by adding
variability to these mean Cho/NAA ratios. Variance was
adjusted to match the classification performance between
LGGs and HGGs on the extreme spectra. These simulated
data were used to estimate classification performance and
CV on a larger sample.
RESULTS AND DISCUSSION

Linearity validation and data quality

Compared with our previous research study (17), the
clinical scans of this study are characterized by significant
background noise, phase distortions, and frequency shifts,
indicating field inhomogeneities. Wewere able to use only
20 of the 28 available clinical scans, as outlined in the
section on voxel selection. For these data, we developed
data-conditioning routines to ensure proper filtering of
residual water signal, as well as correcting for frequency
shifts due to an inhomogeneous magnetic field. Phase
correction proved difficult because of significant noise in
the data. We opted therefore to operate on absolute spectra
rather than the real-valued absorption spectra. Although
this guaranteed positive spectra and resolved potential
inconsistencies across voxels, it did introduce a non-linear
distortion as a result of the absolute value operation.
Fortunately, taking the absolute value of a sum of complex
numbers is approximately a linear operation if the sum is
dominated by a single element. Here, this means that
linearity of the model can be approximately preserved if
the resonance lines do not overlap and the noise is small.
This is also true for 1808 inverted peaks such as lactate.
NMR Biomed. 2008; 21: 1030–1042
DOI: 10.1002/nbm
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To confirm whether the linear model is sufficient in the
present context, we compared, using the simulated data,
the absolute spectra obtained for mixed voxels with the
sum of the absolute spectra of pure voxels. Figure 2 shows
the result of the simulation for various SNRs. SNR was
defined here as the power in the frequency range
1.8–2.2 ppm and 2.7–3.4 ppm over power in the range
0.6–1 ppm and 3.5–3.8 ppm (note that residual water will
contribute to the noise estimate). These ranges were
chosen to capture the Cho, Cr, and NAA signals. The
black dots and the shaded areas represent the mean R2

value and 95% confidence intervals at each SNR level.
The graph indicates that the accuracy of the model
depends on the noise levels. With poor SNR, the linearity
assumption is violated, and the estimation for A and S
may no longer be reliable. We measured the SNR also on
our clinical data and found that the useful scans have an
SNR of 4 dB or higher. For those SNR values, the linear
model is a reasonable approximation, with mean
R2¼ 0.85. Hence, the linear model may be appropriate
for the absolute spectra in a subset of clinical data with
SNR above 4 dB.

Spectrum separation of clinical MRS images
of brain tumor

The NMF separation algorithm computes the abundance
of each tissue type for each voxel. This information can
be used to assess the spatial extent and infiltration of the
tumor beyond the intensity enhancement region.
Examples of the abundance estimates, A, encoded as
false-color images are shown in Fig. 3. These examples
show the data for two patients with HGG (top two rows)
and one patient with LGG (bottom row). In this overlay,
the abundance of the tumor spectrum for a given voxel is
represented as a color between blue (no tumor) and red
(tumor). The figure also shows that the two extracted
spectral profiles coincide with the standard clinical
criteria for normal and tumor spectra, i.e. the spectrum
with a large Cho and reduced NAA peak is considered to
be a tumor, whereas a ratio of peak areas of 1/2 is
considered normal (31,32).
The present method is similar to nosologic images (33),

a previously proposed method for summarizing MRI and
MRSI brain tumor data as a color-coded anatomical
image. In that method, voxels are classified on the basis of
MRSI andMRI data, and each tissue class is marked on an
MR image as a separate color (e.g. HGG, LGG or
necrosis, normal, etc.). In contrast, the present method
only uses spectral information and reports continuous
valued abundance estimates for tumor and normal tissue
rather than discrete labels. It thus represents the spatial
extent and infiltration of the tumor tissue. It provides an
alternative view of the MRSI data to the radiologist, who
can then combine this information with the anatomical
MRI data.
Copyright # 2008 John Wiley & Sons, Ltd.
Physiological relevance of the extracted
spectra S: reduced cross-subject variability

Metabolite peak areas in conjunction with conventional
MRI findings are used to determine the presence of tumor.
A conventional quantitative criterion is the CNI, which
measures the ratio of the Cho peak area (or height) to the
area (or height) of the Cr or NAA peak (22). Disregarding
other variables such as patients’ age and locations of the
voxels, a CNI slightly higher than 1 is generally
considered abnormal but non-specific, and a CNI above
3 is likely to be a high-grade tumor. However, tumor
heterogeneity, partial volume coverage, and measurement
noise add significant variability to the spectra, making this
quantitative criterion difficult to use (35,36).

To confirm the physiological relevance of the extracted
spectra and demonstrate reduced variability, we looked at
the Cho and NAA peak areas of the extracted spectra for
the 20 available clinical cases with confirmed primary
gliomas as shown in Fig. 4. Areas were normalized to be
independent of an overall (arbitrary) scale (see Exper-
imental). Figure 4a shows the original raw spectra of
individually selected voxels (see Experimental) for all
20 cases. To show the effect that one may expect from
(naively) combining multiple voxels, we show in
Fig. 4b the spectra obtained after averaging over selected
voxels and compare the averaged spectra with those
obtained with the separation algorithm (Fig. 4d). Aver-
aging reduces noise and hence some of the overlap, but is
not sufficient to reliably distinguish between normal and
tumor tissue. Evidently the overlap of averaged spectra is
significantly larger than that of the extracted spectra. The
origin of this reduced variability is twofold. First,
assigning abundance values to each voxel captures and
compensates for the variability due to partial volume.
Second, computing a single spectrum that is applicable
across many voxels reduces estimation variance due to
measurement noise. To assess these effects, Fig. 4 also
shows the results of spectra with extreme CNI (Fig. 4c).
Peak areas from the extreme spectra – probably
representing pure voxels with 100% volume fraction –
show reduced overlap and improved separation between
normal and tumor and between HGG and LGG. Reduced
spectral variability manifests itself in better differen-
tiation of the three tissue types after separation (HGG,
LGG, and normal).

To quantify the reduction in variability, we measured
the CVof CNI. Changes in CNI were not significant due
to the small sample size. We therefore simulated data for
60 cases of HGG and LGG (see Experimental) and indeed
found a significant reduction in CV (change in CV of
3.39� 0.09 for HGG, p¼ 0.002, and 4.07� 0.09 for
LGG, p¼ 0.0003; n¼ 120). To judge whether this
difference is clinically relevant, we now focus on the
ability of the data to deliver a diagnosis on an individual
subject basis. In general, the proposed method delivers
multiple spectra and peak areas, and diagnosis may
NMR Biomed. 2008; 21: 1030–1042
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Figure 6. Validation of the estimated abundance, A, in the phantom study (a) and
simulated data (b). (a) The horizontal axis gives the actual volume fraction of the ‘tumor-like’
spectrum (realA), which is calculated on the basis of the geometry of the phantom in Fig. 5.
Pure voxels in the upper chamber corresponding to ‘tumor-like’ metabolite concentrations
are given abundance values¼1, and pure voxels in the lower chamber have abundance
values¼0. Voxels covering the chamber boundary have intermediate values based on the
fraction of volume covered. The vertical axis gives the estimated abundance of ‘tumor-like’
spectrum as computed by the NMF algorithm (estimatedA). The dotted line indicates 100%
accuracy of the estimation. Solid and dashed lines are the sigmoid fitting curve and the 95%
confidence intervals, respectively. (b) The same plot as in (a) on simulated data with
randomly chosen volume fractions and noise. The simulation was repeated 100 times to
estimate the mean and confidence intervals. Sample points shown are a subset of these
repetitions. The horizontal axis gives the predefined volume fractions. The vertical axis gives
the abundance estimates computed by the NMF algorithm.
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require a multivariate discrimination technique (33). On
the present data, however, it was sufficient to consider the
ratio between Cho and NAA peak areas. This specific
linear discrimination criterion is captured by the CNI. The
conventional figure of merit for classification, which
captures sensitivity at various levels of specificity, is the
area under the ROC curve (AUC) (30). ROC curves are
shown in Fig. 7. Mean and standard deviation for the AUC
were evaluated with a bootstrapping method (resampling
from 20 cases with replacement) (37). The diagnostic
specificity for distinguishing LGG from HGG is
substantially increased from 0.83 to 0.89. To show a
significant difference for this six point improvement in
AUCwould require at least 60 samples. This follows from
a power analysis based on the test of DeLong et al. (38).
We therefore simulated larger datasets with parameters
and performance that match the clinical data and found a
significant improvement in AUC (p¼ 0.009) with a
sample size of 30 LGG and 30 HGG cases.

The first conclusion from Figs. 5 and 7 and Table 1 is
that the extracted spectra are physiologically meaningful
and can be given a clinically significant interpretation.
Secondly, the reduced variability is reflected in improved
diagnosis.

In this study, for simplicity, two constituent spectra
were assigned either to normal or tumor tissue. As
discussed above (see Experimental), for certain cases
with clear lactate/lipid peaks (in two of the 20 subjects),
one more component could be assigned and represented
the high-lipid tumor region. Indeed, the inverted lipid
peak is known to provide useful information for
Copyright # 2008 John Wiley & Sons, Ltd.
discrimination between HGG and LGG (33). For the
present data, the inclusion of such a third component had
no significant effect on discrimination performance
(improvement from 0.89 to 0.92 in AUC). Future work
with a larger subject population will consider algorithmic
improvements that will capture the sign of inverted peaks.
Comparison of abundance estimates, A,
with anatomical MRI data

To quantitatively evaluate the abundance estimates, we
performed an ROC study using ‘truth labels’ for each
voxel obtained from a neuroradiologist who had access to
all available anatomical MRI data (see Experimental).
The AUC from the 20 cases is 0.90� 0.13 (mean�SD)
for discriminating normal and tumor voxels and
0.91� 0.09 for discriminating HGG and LGG voxels.
Validation of abundance estimates, A, as
volume fraction on a phantom

Having estimates of tumor abundance for each voxel
suggests that it may be possible to detect the presence of a
malignant tumor even in low volume fractions at which
the present method based on CNI fails: a small volume
fraction within a voxel reduces CNI for an other-
wise highly malignant tumor. Therefore, accurate
abundance estimates, A, could be used for tumor
detection in this scenario of low volume fraction. This
NMR Biomed. 2008; 21: 1030–1042
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Figure 7. Classification of performance between HGG and LGG using CNI criterion. The four panels on the
left show ROC curves estimated using a bootstrapping procedure. CNI diagnostic criterion (CNI¼ 3) is
indicated as straight dashed line for the extreme spectra following clinical convention. Mean AUC for all four
conditions is summarized on the right. Error bars indicate the standard deviation of the bootstrapping
procedure. Diagnostic performance on these data is improved substantially by using extracted spectra
(AUC¼0.89) as compared with the current clinical practice of using extreme spectra (AUC¼0.83).
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should result in increased detection sensitivity in addition
to the improvement in specificity resulting from reduced
spectral variability of estimates, S. This is particularly
important given that diagnosis and treatment are typically
based on the most malignant tumor, which may at first
only be present in small volume fractions.
To validate the accuracy of the abundance estimates,

we show in Fig. 5 the result from the phantom study. The
NMF algorithm recovered spectral profiles with peak
areas that correspond to the concentration in each
solution. The ‘normal’ spectrum shows a displacement
of the Cr peak, which would have been expected at 3 ppm.
This shift is evident also in the original spectrum of the
lower chamber (see Fig. 5). As the algorithm is adaptive,
Table 1. Discriminability (AUC) for raw, average, extreme

Comparison Raw voxel spectra Average spectra across vo

Normal vs tumor 80% 90%
LGG vs HGG 67% 78%

Copyright # 2008 John Wiley & Sons, Ltd.
it has no difficulty in extracting this unexpected spectral
profile. This shows that the method correctly decomposes
the observed data into constituent spectra corresponding
to the different solutions with their specific metabolite
concentrations.

To quantify the accuracy of the abundance estimates,
we show in Fig. 6a the relationship between the actual
volume fraction covered by each voxel (real A), as
determined from the geometry of the overlay shown in
Fig. 5, and the abundance estimates from the NMF
algorithm (estimated A). The result shows that the values
are better estimated for intermediate-ranged abundances
than for high and low abundance estimates, where one
can see an upward and downward bias. We hypothesize
and extracted spectra (Fig. 4)

xels Extreme voxel spectra Extracted constituent spectra

100% 100%
83% 89%

NMR Biomed. 2008; 21: 1030–1042
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that the origin of this estimation bias is a violation of
the linearity assumption that is required for spectrum
separation; the large confidence interval is due to noise.
To test this hypothesis, we show in Fig. 6b the
relationship between the actual volume fractions and
the abundance estimates on simulated data with an SNR
of 11.5 dB (R2¼ 0.98) comparable to the phantom data.
The figure combines the results from multiple runs
(100 repetitions, each with different randomly chosen
volume fractions and Gaussian-distributed white noise).
The result shows a similar pattern to the one in
Fig. 6a. The same simulation study performed at 4 dB
(R2¼ 0.85), which is the minimum required for the
clinical data, shows a comparable bias with an increase in
the confidence intervals. This indicates that the poor
abundance estimates in high and low volume fractions
are due to a systematic bias. A modified NMF separa-
tion algorithm, such as in (34), may be able to fix the bias
because it does not require the non-negativity constraint.
In fact, the bias may already be corrected, as it can be
predicted from simulations. In contrast, the large
confidence interval cannot be improved upon, as it
results from the noise of the measurements. This noise is
already evident in the pure voxel spectra, as shown in the
left panel of Fig. 5.

Finally note that, confronted with noise (and distor-
tions), the decomposition returns the correct spectra S (as
reflected by correct peak ratios in Fig. 5) but makes a
biased estimate on abundances A. The linear decompo-
sition permits A to be adjusted to every voxel, but it is
forced to use the same S across all voxels. Hence,
variability across voxels due to noise and distortions can
only be captured by A, leaving the estimate for S largely
unaffected.
CONCLUSIONS

We have shown in the phantom study that the method
correctly decomposes the observed data into constituent
spectra corresponding to the different solutions with their
specific metabolite concentrations. It validated the
interpretation of abundance estimates, A, as partial
volume fraction and established bias and confidence
intervals for its estimates. In addition, we have confirmed
the physiological and clinical relevance of the extracted
spectra, S, by correlating the analysis results with
pathologically proven tumor grades from 20 patients.
Despite known tumor heterogeneity, we have shown
improved correlation of tumor grade with spectral
patterns (Cho concentration versus NAA concentration),
supporting our hypothesis that some variability is due to
the partial-volume effect. We have quantified the
limitations of the method and found that a minimum
SNR of 4 dB is required for at least a fraction of relevant
voxels. Taken together, the results indicate that MRSI in
combination with the proposed spectrum separation
Copyright # 2008 John Wiley & Sons, Ltd.
method may be useful in defining tumor margins for
treatment planning of radiation therapy (39) or surgical
resection.
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