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1.1 Abstract

We describe our work using linear discrimination of muliacinel electroencephalography
for single-trial detection of neural signatures of visuadagnition events. We demonstrate
the approach as a methodology for relating neural vartgtiti response variability, de-
scribing studies for response accuracy and response Yadeniog visual target detection.
We then show how the approach can be utilized to constructel type of brain-computer
interface, which we term cortically-coupled computer @isiln this application, a large
database of images is triaged using the detected neuralsigs. We show how ‘cortical-
triaging’ improves image search over a strictly behaviogaponse.

1.2

Introduction

Running in the park with your head phones on, listening toryavorite tune and concen-
trating on your stride, you look up and see a face that you idiately recognize as a high
school friend. She is wearing a hat, glasses, and has ageeht$ since you last saw her.
You and she are running in opposite directions so you onljhseéor a fleeting moment,
yet you are sure it was her. Your visual system has just éffgsty accomplished a feat that
has thus far baffled the best computer vision systems. Suility & rapid processing of
visual information is even more impressive in light of thetfthat neurons are relatively
slow processing elements compared to digital computersrevimdividual transistors can
switch a million times faster than a neuron can spike.

Non-invasive neuroimaging has provided a means to peettlitdorain during rapid
visual object recognition. In particular, analysis of ké&eraged event-related potentials
(ERPs) in electroencephalography (EEG), has enabled oasstss the speed of visual
recognition and discrimination in terms of the timing of tinederlying neural processes
[33]. More recent work has used single-trial analysis of Eie&haracterize the neural
activity directly correlated with behavioral variabiliduring tasks involving rapid visual
discrimination [7, 28]. These results suggest that comptenextracted from the EEG can
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capture the neural correlates of the visual recognitiondeuilsion making processing on
a trial-by-trial basis.

In this paper we consider how such EEG components might lieagkfor constructing a
brain computer interface (BCI) system for rapidly assagstreams of naturalimages. Tra-
ditionally, non-invasive BCI systems have been based orobttee following paradigms;
1) having a subject consciously modulate brain rhythms {26j 36, 6]), 2) having a sub-
ject consciously generate a motor plan and/or visual img@st, 35], 3) directly modulate
the subject’s cortical activity by the stimulus frequeneyg( steady state visually evoked
potentials SSVEP) [16, 4] or 4) exploit specific ERPs suchhasniovelty/oddball P300
[15]. The approach and system we describe is most simildnedater, though our fo-
cus is on single-trial detection of ERPs and their relatigm$o visual discrimination and
recognition.

We begin this paper by providing a brief review of the line@cdmination methods
we employ to extract task specific components in the EEG. \&e show how such com-
ponents are in fact directly coupled with the visual diséniation and decision making
processes for stimuli involving rapid sequences of natunabes. For example, we show
that we can construct neurometric functions from the EEGpmmants which are indistin-
guishable from the corresponding psychometric functionsfrapid serial visual presen-
tation (RSVP) task. We also investigate the neural coeslaf response time variability
responsible for such perceptual decision making proceggzshen describe how we use
this approach to develop a BCI system high-throughput imetgiege. We term our system
cortically-coupled computer visiasince we leverage the robust recognition capabilities of
the human visual system (e.qg. invariance to pose, lightiogle, etc), and use a noninva-
sive cortical interface to intercept signatures of rectignievents—i.e. the visual processor
performs perception and recognition and the EEG interfateats the result (decision) of
that processing.

1.3 Linear methods for single-trial analysis

The goal of a BCI system is to detect neuronal activity asdgediwith perceptual and/or
cognitive events. Detecting such events implies deteotthgn an event occurred and
identifying its significance. The task is greatly simplifidthe timing information is
provided by an external observable event. Thus the coromaltparadigm of the evoked
response considers the neuronal activity following thes@néation of a stimulus. In our
work we have adopted this paradigm by analyzing the EEGigct¥ multiple electrodes
following presentation of an image. For simplicity we aimidentify only one type of
event, visual target recognition, and differentiate thaf other visual processing. The
task is therefore a binary classification based on the teahpod spatial profile of the
potentials evoked following stimulus presentation. Inrguteal an image is presented and
in some trials the image contains a target object which warasss recognized by the
subject. The EEG activity following each stimulus is rea@mdasD x T values, where
D is the number of channels affdis the number of samples. Typically we record data
at 1000 Hz in up to 64 channels. With a time window of half a sectllowing the
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presentation of the stimulus, one would have acquired 38a60(ples. This is a rather large
feature vector considering that typically there are feaantN = 100 exemplars (trials)
to train a classifier. In addition, EEG signals have a very $ignal-to-noise ratio (SNR)
and brute-force classification of these 32000-dimensif@adilire vector will typically fail.

To obtain reasonable classification performance we expldir information on the
temporal characteristics of the signal and noise with thieiing steps: (1) Reduce the
trial-to-trial variability by filtering the signal to rem@®60Hz interference and slow drifts
(slower than 0.5 Hz). This assumes that slow constant cisrigglow 0.5 Hz carry no
information; (2) Reduce the dimensionality of the probleynskepping our classification
window everyL-th sample assuming that the signal of interest does notraagh within
L samples; (3) Increase the number of exemplars by usind.tredundant samples in
each classification window. This implies that the variatigthin 1. samples is considered
noise, i.e. forL. = 50 the signal of interest is at 10Hz while faster signal vaoiatare
considered noise. Steps (2) and (3) taken together wilktoam the original data for each
trial with 7D dimensions intal. exemplars of onlyDT'/L dimensions. As an example,
with L = 50 and N = 100 one will acquire 5000 training examples, which can be used
to train a classifier with a 640-dimensional feature vecdidmittedly this samples are not
independent, but they are useful as they capture the nailse ttata at least for frequencies
above 10Hz.

We have obtained good classification results with a simpleali classifier of these
DT/L-dimensional feature vectors. The classification methodeisonstrated in Fig-
ure 1.1 for the simple case of a single training winddw={ 7" and D-dimensional feature
vector). Linear classification means that the feature vectis projected onto an orien-
tation defined by vectow such that the projection; = w”x, optimally differentiates
between the two classes. This is a traditional problem itepatecognition with various
solutions depending on the exact optimality criteria. Inodfdline processing mode we
use penalized logistic regression as it gives us the bestrgkration performance on this
data [25]. For well-separated classes this linear claasific method is equivalent to lin-
ear support vectors. In an real-time processing mode weigberHinear discriminants as
the required means and covariances can easily be updatétecs more trials become
available for training. For a discussion on the relativeddits of various linear classifica-
tion methods with EEG data see [23, 25]. Classification perémce is measured with the
conventional receiver operating characteristic (ROCyei8], specifically the area under
the ROC curve 4z). We will report in all cases the cross-validated test-sgfggmance
using a leave-one-out procedure where we leave out all ssnyellonging to one trial.

One can conceive of many other ways of classifying the sgatitporal evoked re-
sponses including non-linear methods. In fact, many difiealgorithms have been pro-
posed, which exploit different prior assumptions on thenalg [25, 18, 20, 3]. We are
partial towards linear methods for two reasons: (1) Thealinr@ombination of voltages
has an immediate interpretation as a current (tissue isgpilinresistive with coupling
coefficients representing conductivity). The coefficiethst couple this current with the
observed voltages are given for the linear modebby, (x”y) / (y?), where the angular
brackets indicate the average over trials and samplesif8péyg, coefficientsa describe
the coupling (and correlation) of the discriminating comenty with the sensor activity
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Figure 1.1: Linear discrimination in EEG: (a) THe-dimensional EEG activityX, is
projected onto a single dimensign (X is a matrix of channels by samples, apds a
row vector containing multiple samples). The row vectgrs;ontaining the samples that
follow each target stimulus presentation, can be arrangedtfiltiple trials as a matrix.
This matrix §target - MeaANFHon—target)) iS displayed here as an image with white and
black representing the largest and smallest values ragplgcil he projection vectow is
chosen so that the valugswithin the training window differ maximally between target
and non-target trials. (b) The sensor projectiarsse computed for the samples within the
training window. (In this equation the inner product congauthe average over trials and
samples. Therefore matriX and vectoty extend here over the training samples from all
trials.) The resulting values of are displayed at the corresponding scalp locations as a
color-map with white and black representing the largestamdllest values respectively.
When the intensity averaged within the specified time window is used as claasibic
criteria we achieve on this data an-value of 0.84. The probability of obtaining ate of
this magnitude by chance is less than 19640.01).

x. Botha andx are D-dimensional vectors (row and column respectivelyprig coupling
indicates low attenuation of the component and can be vidas intensity maps that we
call the ‘sensor projections’ [25], (2) Linear methods a@syeto implement and are fast,
permitting real-time operation. The disadvantage of outhme is that it does not capture
synchronized activity above 10Hz, and neither does it aepativity that is not at a fixed
distance in time from the stimulus, instead only phasedddkctivity is detected.

In the remaining sections we give several examples of hosvlthéar discrimination
method is used to identify the neural correlates of decisimking and response time
variability, as well as how it can be integrated into a BClteysfor image triage.
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1.4 EEG correlates of perceptual decision making

Identifying neural activity directly responsible for peptual decision making is a major
challenge for non-invasive BCI systems. A number of ingzdtirs have studied the neural
correlates of decision making in awake behaving animalgairticular primates, where
single and multi-unit recordings have been analyzed usgpsdetection theory [8] and
subsequently correlated with the animal’s observed ben§®j 1, 24]. These approaches
consist mainly of direct comparisons between psychomainit neurometric functions
since this enables one to relate the variability of the rleacévity to the variability
observed in the behavioral response. The technique has dm#ied in a variety of
perceptual decision making paradigms, including disaration of visual objects such
as faces [17]. The approach, though powerful, has beerelirtd animal studies which
use invasive recordings of single-trial neural activitiést to be demonstrated however is
whether decision making could be studied in a similar fashion-invasively, in humans.

We use single-trial linear discrimination analysis, adinad in the previous section, to
identify the cortical correlates of decision making duriagid discrimination of images.
Psychophysical performance is measured for several dslgjadng an RSVP task, where
a series of target (faces) and non-target (cars) trials srsepted in rapid succession
(Fig. 1.2a), while simultaneously recording neuronalhdigtifrom a 64-channel EEG
electrode array. Stimulus evidence is varied by manipuiatine phase coherence [5] of
the images (Fig. 1.2b). Within a block of trials, face andiozages over a range of phase
coherences are presented in random order. We use a set afel@Max Planck Institute
face database) and 12 car grayscale images (image size 512 pixels, 8-bits/pixel).
Both image types contained equal numbers of frontal and\sales (up to 45 degrees).
Allimages are equated for spatial frequency, luminancecandrast. Subjects are required
to discriminate the type of image (face or car) and repoit thexision by pressing a button.

EEG data is acquired simultaneously in an electrostayicsiielded room (ETS-
Lindgren, Glendale Heights, IL) using a Sensorium EPA-&&tphysiological Amplifier
(Charlotte, VT) from 60 Ag/AgCl scalp electrodes and frometh periocular electrodes
placed below the left eye and at the left and right outer daAthchannels are referenced
to the left mastoid with input impedance 15k and chin ground. Data are sampled
at 1000 Hz with an analog pass band of 0.01-300 Hz using 12cti#® high pass and
eighth-order elliptic low pass filters. Subsequently, asafe based 0.5 Hz high pass filter
is used to remove DC drifts and 60 and 120 Hz (harmonic) nottgrsiare applied to
minimize line noise artifacts. These filters are designebtiddinear-phase to minimize
delay distortions. In all our experiments we record also E<ifbals and remove motion
and blink artifacts using linear methods as described ih [@6tor response and stimulus
events recorded on separate channels are delayed to ntatetids introduced by digitally
filtering the EEG.

Using a linear discriminator, we identify EEG componentt tinaximally discriminate
between the two experimental conditions. At each phasereahe level, and between the
stimulus onset and the earliest reaction time, we identify time windows which gave
the most discriminating components. For this paradigm aly éaz 170 ms following
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stimulus) and a late component (300 ms following stimulus) can be identified. In
order to be able to directly compare the neuronal performatthese two times, to the
psychophysical sensitivity as captured by the psychométrictions [8], we construct
neurometric functions by plotting the area under the RO@asIfAz values) against the
corresponding phase coherence levels. A linear discriminia trained by integrating
data across both time window&Ip-dimensional feature vector). With this approach,
we generally observe for the discriminator improved perfance (and hence highér:
values) compared to when training is performed on the iddi&l components in isolation.
Figure 1.3 shows a comparison of the psychometric and neatranfunctions for one
subjects in the dataset. To demonstrate that the EEG-dengerometric functions can
account for psychophysical performance, a likelihoodbrgst is used [11] which shows
that for all the subjects a single function can fit the behaliand neuronal data sets as
well as the two separate functions.

For both the early (the well-known N170 [31, 29, 12]) and lee selective compo-
nents, at each phase coherence level, we construct disanintomponent maps to help
us visualize the temporal evolution of the discriminatiogj\aty across trials. Data is an-
alyzed for both stimulus and response-locked conditidmsywing that both face selective
components appear to be more correlated with the onsetwdivdsimulation rather than
the response as shown in Figure 1.4 for one subject. In addite construct scalp maps
of these discriminating components. The spatial distidiouof activity seems to indicate
signaling between occipito-parietal and centro-fronetworks, consistent with several
ERP/MEG and functional neuroimaging studies [9, 10, 19331, The Az values which
describe the discriminator’s performance at each phaserenbe level are also shown. For
the subject shown in Figure 1.4, the discriminant activatygtatistically significant down
to a 30% phase coherence for both the early and late commoagmissessed by a boot-
strapping technique. Specifically, we compute a signifiedeeel for Az by performing
the leave-one-out test after randomizing the truth labetsuo face and car trials. We re-
peat this randomization process 100 times to produce anrioraization distribution and
compute the Az leading to a significance levepof 0.01.

Our results demonstrate that neural correlates of perabpicision making can be
identified using high-spatial density EEG and that the gpoading component activities
are temporally distributed. Clearly important to the idfication of these neural correlates
is the spatial, and to a lesser extent the temporal integraif the EEG component
activities. This approach is complementary to approaclstsgusingle and multi-unit
recordings since it sacrifices spatial and some temporalutien (local field potentials
versus spike-trains) for a more spatially distributed viefathe neural activity during
decision making. The fact that we are able to identify negmtelates of perceptual
decision making using relatively poor spatial resolutibEBEG suggests that these neural
correlates represent strong activities of neural popaiatand not the activity of a small
number of neurons. As such, this approach can be proveniaiperseful in designing
non-invasive BCI systems that can reliably predict behraliesponses.

1.5 Identifying cortical processes leading to response tievariability
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Figure 1.2: Schematic representation of the behavioradigm. (a) Within a block of
trials subjects are instructed to fixate on the center of tmees and are subsequently
presented, in random order, with a series of different faxckcar images at one of the six
phase coherence levels shown in (b). Each image is prestmt80 ms followed by an
inter-stimulus-interval lasting between 1500-2000 msrduwhich subjects are required
to discriminate among the two types of images and responddssimg a button. A block
of trials is completed once all face and car images at all Bixsp coherence levels are
presented. (b) A sample face image at 6 different phase enbeievels (20, 25, 30, 35,
40, 45%).
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Figure 1.3: Comparison of behavioral and neuronal perfogaaPsychometric (solid
gray) and neurometric (solid black) functions for one sabj@he abscissas represent
the percentage of phase coherence of our stimuli and theaiedindicates the subject’s
performance as proportion correct. We fit both data with sepaNeibull functions [30].
The psychophysical and neuronal data are statisticalligtinguishable as assessed by a
likelihood ratio test after we fit the best single Weibull &tion jointly to the two data
sets. Thep-value in the bottom right corner represents the output isf tst. Ap-value
greater than 0.05 indicates that a single function fits ttedata sets as well as the two
separate functions. The dotted gray lines connectithgalues computed for each of the
two training windows separately (earlier window, light grarcles; later window, dark
gray squares).

Significant variability in response time is observed actdats in many visual discrimina-
tion and recognition tasks. A variety of factors may accdantesponse time variability
ranging from the difficulty in discriminating an object onyagiven trial, trial-by-trial vari-
ability of the subject’s engagement in the task, or inténgriability of neural processing.
Identifying neural activity that is correlated with respertime variability may shed light
on the underlying cortical networks responsible for petgalpdecision making processes
and the processing latencies that these networks may irdedir a given task.

We study visual target detection using an RSVP paradigm ardsingle-trial spatial
integration of high-density electroencephalography emtdy the time course and cortical
origins leading to response time variability. The RSVP &skilates natural saccadic scene
acquisition and requires high vigilance. The RSVP paradgitiustrated in Figure 1.5.
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Figure 1.4: Discriminant component activity that shows diféerence between face vs.
car trials at each coherence level for one subject for (apérly (N170) and (b) the late
(= 300 — 400 ms) window. White represents positive and black negatitieinc Each row
of these maps represents the output of the linear discrioifar a single trial, using a 60
ms training window (vertical white lines) with onset timgesified at the top of each panel.
All trials are aligned to the onset of visual stimulationiradicated by the vertical black line
at time 0 ms, and sorted by response time. The black and wgiteoglal curves represent
the subject’s response times for face and car trials reispctThe representation of the
topology of the discriminating activity is shown by the grplots to the right (dorsal view).
White represents positive correlation of the sensor regdia the extracted activity and
black negative correlation. Thé&, values for each time window at each coherence level
are represented by the bar graphs. The significance of teeatite activity is represented
by the dotted line{ = 0.01).

Activity associated with recognition has been identifiethvihe RSVP paradigm as early
as 150ms after stimulus presentation [33]. More recent vavgues that this activity

is associated with differences in low level features of thegery rather than target
recognition [13]. The varied scale, pose and position ajgapbjects (people) requires
subjects to recognize objects rather than low level featudaring this task, participants
are presented with a continuous sequence of natural sdeaggipants completed four
blocks of 50 sequences each with a rest period lasting no tharefive minutes between
blocks. Each sequence consists of 50 images and have a 50%ecbficontaining one

target image with one or more people in a natural scene. Tiaeget images can only
appear within the middle 30 images of each 50 image sequéiheeremaining natural



Single-trial analysis of EEG during rapid visual discrimation
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Figure 1.5: Example Rapid Serial Visual Presentation (RSK&. A fixation cross lasting
two seconds is followed by a sequence of 50 images. Eachiseghas a 50% probability
of containing one target image. This target can only appé&himthe middle 30 images to
ensure that a one second image buffer precedes and follewartiet.

scenes without a person are referred to as distractor imkgeh image was presented for
100 ms. A fixation cross is displayed for 2 seconds betweeunesemps. Participants are
instructed to press the left button of a generic 3-buttonseowith their right index finger
while the fixation cross is present, and release the buttsn@s as they recognize a target
image.

Linear discrimination is used to determine spatial weigdntoefficients that optimally
discriminate between EEG resulting from different RSV tesnditions (e.g. target vs.
distractor images) over specific temporal windows betwéerutus and response. Integra-
tion across sensors enhances signal quality without los=ngboral precision common to
trial averaging in ERP studies. The resulting discrimmgitomponents describe activity
specific to target recognition and subsequent responsediidual trials.

Inter-trial variability is estimated by extracting feadsrfrom discriminating compo-
nents. While robust extraction of component onset fromviiddial trials is extremely dif-
ficult due to the stochastic nature of EEG, there is evidefistrong correlation between
ERP peak and onset times [32]. The peaks of spatially intedrmiscriminating compo-
nents were found by fitting a parametric function to the eted componeng(¢). For
simplicity we use a Gaussian profile that is parameterizeitisiyeight(, width o, delay
1, and baseline offset:

_=m?

e 207 . (1.2)

y(t) = a +
g(t) T
Response locking of discriminating components is detegthloy computing the linear
regression coefficients that predict the latency of the comept activity as measured by
1 from the response times given byas described by Equation 1.2. The slope from the
response time peak latency regressi@nig defined to be the degree of response locking
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(percentage) for each component. This metric quantifiesxtent to which the component
is correlated with the response across trials. It ranges &6 for pure stimulus lock to
100% for pure response lock. A sloge= 100% indicates that slow responses show a
corresponding late activity, and fast responses show agponding early activity. A slope
of # = 0% indicates that the timing of the activity does not changéwdésponse time and
is therefore stimulus locked.

fi; = 0r; +b (1.2)

wherefi; andr; are the predicted peak latencies and response times fetthigial and
b is an offset term for the regression. This is shown for ongesatlin Figure 1.6.

The group results for the discriminating component agtigitross nine participants is
shown in Figure 1.7. Scalp projections of discriminatingnpmnents were normalized
prior to averaging. Group averaged results show a shift wfigcfrom frontal to parietal
regions over the course of 200 ms, which is consistent witlvipus studies of visual
oddball [22, 21]. Additional analysis and discussion isvialed in [7].

In order to estimate the progression of response lockingsacall subjects, it is nec-
essary to account for response time variability betweeiests It is not appropriate to
average results since components are not temporally aligoess subjects. Rather, his-
tograms of response times were equalized to one subjegets®), and component peak
times were scaled accordingly. Scaled response times angaw®wnt peak times were
concatenated across subjects. These registered groumsestimes were then projected
onto the scaled component peak times to estimate the defjrespmnse locking across
subjects. The group response lock increases from 28% atmad0 78% 50 ms after the
response.

The features of discriminating components are believecefieat visual processing,
attention and decision stages. Modeling the peak latemeglisude and duration of each
trial allows us to study the extent to which each stage vavilsresponse time. Consistent
with [14], Figure 1.7 indicates that significant processitedays may be introduced by
early processing stages. Within 200 ms prior to respors23) ms following stimulus),
activity is already, on average, between 25-35% respomrgedb Due to our method, it is
not possible to determine whether this response lockingésalt of components at this
onset time or earlier onset times, since discriminatingponents were not significant for
earlier onset (peak) times. Thus we conclude it is posdlitaletome of this early response
locking may be due to early visual processes (0-250 ms [posisis). For our nine
subjects, correlation analysis reveals that discrimigatiomponent activity progressively
becomes more response locked with subsequent processiggsstAlong with scalp
projections derived from discriminant analysis, the calality of peak latency with
response time describes which cortical regions introducegssing delays, providing
insight into the nature of information flow through the brdirring visual discrimination.

1.6 EEG-based image triage
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Figure 1.6: Detailed temporal analysis of stimulus lockestiiiminating activity for sub-
ject 2. Each row in the left column shows the fit of discrimingtactivity to a Gaussian
profile described by Equation 1.1. On the top of each of thesels is the onset time of
the window used for discrimination. Right columns of eachqdalisplay the peak latency
(1) (black dots) of each trial. The projection of response time® these peak latencies
is shown with a line black curve, with thick black curves eg@nting response times. The
parameters for this projection indicate the degree of nespdtocking for each component.
Purely stimulus and response locked conditions are inglichy 0% and 100% response
lock respectively. On top of these panels are reported thmeperesponse lock and corre-
sponding error in the fit of the peak latencies across trialgal as the mean onset time
of the component. The standard deviation of peak latensi62 ms.
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Figure 1.7: Group results over all 9 subjects for stimuluskéa discriminating compo-
nents. Top row shows scalp distribution of discriminatictj\aty averaged over all sub-
jects. Bottom row shows the degree of response locking awex. Error bars reflect stan-
dard error of the regression parameter associated witlomssdocking %. For all subjects
the first discriminating activity is frontal and correlatetbre with the stimulus than re-
sponse. By the time it arrives in parietal areas a delay has inéroduced.
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Finally, we describe an EEG system capable of using neuyabksirres detected during
RSVP to triage sequences of images, reordering them scatigetimages are placed near
the beginning of the sequence. We term our system “conyieatlupled computer vision”
since we leverage the robust recognition capabilities eftbman visual system (e.g.
invariance to pose, lighting, scale, etc), and use a noasiuae cortical interface (e.g. EEG)
to intercept signatures of recognition events — the vist@gssor performs perception and
recognition and the EEG interface detects the result (egsobn) of that processing.

The RSVP triage task is similar to the task described in Eigub however following
the image sequence a series of self-paced feedback slidespresented indicating
the position of target images within the sequence beforeaited EEG—based triage.
Participants completed two blocks of 50 sequences withed test period lasting no more
than five minutes between blocks. During the second blodkici@ants were instructed to
quickly press the left button of a generic 3-button mousdheir right index finger as
soon as they recognized target images. They were instrtigess the button twice, as
quickly as possible, if one target image immediately fokaltthe other. Participants did
not respond with a button press during the first block.

In order to classify EEG on-line we use a Fisher linear digitrator to estimate a
spatial weighting vector which maximally discriminatestaeen sensor array signals
evoked by target and non—target images. During each expetahcondition (with and
without motor response), 5000 images were presented taittject in sequences of 100
images. EEG evoked by the first 2500 images (50 targets, 2dB@argets) was used
to train the classifier. During the experimental sessiortsaiaing window between 400-
500 ms following stimulus onset was used to extract traimiata. Weights were updated
adaptively with each trial during the training period. Glifisation threshold is adjusted to
give optimum performance for the observed prevalenceqgta®r). These weights and
threshold were fixed at the end of the training period andiagpb the subsequent testing
dataset (images 2501-5000).

To boost triage performance, after the experiment multghidessifiers with different
training window onsets were used. The training window aasatged from 0 to 900 ms
in steps of 50 ms. The duration of the training windows was S0@nce these classifiers
were trained, the optimal weighting of these classifier otgpvas found using logistic
regression to discriminate between target and non—targeages.

Again, only EEG data evoked by the first 2500 images was ustditothe classifiers
and then find the inter—classifier weights. These weight&ween applied to the testing
data set evoked by the second set of 2500 images (imagess2Rm).-

Following the experiment, all image sequences were conatdd to create training
and testing sequences that each contain 2500 images (®stamd 2450 non—targets).
These image sequences are re—sorted according to the ofitpuitclassifier with multiple
training windows for EEG evoked by every image.

For comparison, sequences were triaged based on the begponse. Images were
resorted according to:
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p(targetRT) =
p(RT targe}p(targe} (13)
p(RT |targe}p(targed + p( RT |non—targerp(non—target

whereRT is the onset of a button response that occurs within one sexfomage onset.
p(targetRT) = 0 when no response occurred within one second of image orfsepriors
p(targey = 0.02 andp(non—target = 0.98. p(RT |targe} is a Gaussian distribution with
a mean and variance determined from the response times frertraining sequences.
Since more than one response is likely to follow a target enéghe two target images
are presented within one second of each other, for trairéggences response times were
assigned to target images based on the position of the iargge within the sequence. In
other words if the target appeared first in the sequence amébitton responses occurred
within one second of this target’s onset, the first resporeseagsigned to that target image
and the second response was assigned to the second target Foa testing sequences,
if two or more responses occur within one second of the orfsmtyimage, the response
with the greatesp(targetRT) is assigned to the imagg(RT |[non—targetis a mixture of
13 Gaussians, each with the same variance as that uspA@ltarge) and with means
assigned by shifting the mean froptRT |targe) 600 ms in the past to 700 ms in the
future in increments of 100 ms, excluding the actual meap( &f'|targe). This mixture
model contains a sufficient number of Gaussians so that thursiis consistent within
the one second interval following image onggtRT |non—targetwas designed to model
responses occurring within one second of the onset of a aggettimage that is presented
within one second prior to or following a target image.

Triage results for one subject (subject 2) are shown in Eidu8. Figure 1.8(a) shows
number of targets as a function of the number of distractages both before and after
triage based on button press and EEG. The area under the gemegated by plotting
fraction of targets as a function of the fraction of distoadmages presented is used to
quantify triage performance. Triage performance for fidgects is listed in Table 1.1. This
area is 0.50 for all unsorted image sequences since targgesrare randomly distributed
throughout the sequences. Ideal triage performance seisufin area of 1.00. There is
no significant difference in performance between buttosedaand EEG-based triage
(0.934+0.06,0.92+£0.03, p= 0.69, N = 5). Interestingly there is no significant difference
in performance between EEG—based triage for the motor antbhar response conditions
(0.92 4+ 0.03,0.91 + 0.02, p = 0.81, N = 5).

Figures 1.8(b)-1.8(f) are rasters showing the positionhef target images (black
squares) and non—targetimages (white squares) in thetemratad image sequence. Based
on these rasters and the EEG and button—based triage parfoerfor five subjects list in
Table 1.1, it is clear that both EEG and button—based triggiems are capable of a high
level of performance. The button—based triage performbaegés to fail, however, when
subjects do not consistently respond to target stimuli @sgaonse times exceed one sec-
ond. Subject 2, for instance correctly responded to only d8#%rgets during the testing
session. In fact, this subject did not respond to 12 of 50etairgages and the response
time for 1 targetimage exceeded one second. Excessivelydaponses cannot effectively
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Table 1.1: Triage performance and behavioral results

Subject EEG EEG Button EEG (motor) | RT (training) | RT (testing) | % Correct | % Correct
(no motor) (motor) and Button (ms) (ms) (training) | (testing)
1 0.92 0.91 0.87 0.94 418+ 133 | 413+ 101 88 86
2 0.94 0.96 0.86 0.97 412+ 64 450+ 64 94 74
3 0.90 0.87 0.96 0.96 445+ 79 423+ 59 86 94
4 0.91 0.92 0.98 0.98 433+ 74 445+ 59 98 98
5 0.91 0.93 0.98 0.98 398+ 86 402+ 58 96 96
Group | 0.91+0.02 | 0.92+0.03 | 0.93+0.06 | 0.97+ 0.02 421+ 91 426+ 71 92+5 90+ 10

be classified using our bayesian methods since it is not wlkather these button presses
were in response to the target image or a subsequent noetitaage. The EEG response
evoked by images with either no response or a late responkeviever, still consistent
with EEG evoked by the target images with predictable respdimes. The EEG—based
triage system is therefore capable of detecting the retiogrof these target images and
subsequently resorting these target images appropri&talyhis reason we exploit the in-
formation provided by both EEG and button press using amgieseptron to boost triage
performance. This approach is effective for increasiragtiperformance for subjects that
either did not respond or had a delayed motor response tandisémt number of target
images (e.g. subjects 1 and 2).

1.7 Conclusion

Invasive and non-invasive electrophysiological recagdinbtained during RSVP of natu-
ral image stimuli have shed light on the speed, variabilitgl apatio-temporal dynamics
of visual processing. Recent advances in high-spatialifeBEG, real-time signal pro-
cessing, machine learning and human-computer interfesigrd@ave enabled these basic
neuroscience findings to be used in the development of sgstdrich could support high-
throughputimage triage. Further basic and applied neigose research by our group will
consider issues related to learning/priming/habituatiom effect of subject expertise, im-
age type and category and correlated spatio-temporatsteavhich is prevalent in video
sequences. We continue to develop ‘application level’ destrations which focus on in-
tercepting neural correlates of visual discrimination eewbgnition events that effectively
by-pass the ‘slow and noisy’ motor response loop.
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Figure 1.8: Triage performance for subject 2. (a) Numberajdt images presented as a
function of the number of distractor images presented. Alidriage system will place
50 (100%) of target images before all 2450 distractor imaghe light gray curve shows
the original sequence. Button-based triage is shown by #isket curve. The dash—dot
curve shows EEG-based triage during the experiment withnmtor response. The dotted
curve shows EEG-based triage during the experiment wittomesponse and the thick
black curve shows triage based on EEG (motor) and the butsmonse. (b—f) Rasters
showing the position of non—target (white squares) ancetaltigack squares) within the
(b) original image sequence (c) EEG (no motor)-based tsageence, (d) EEG (motor)—
based triage sequence (e) button—based triage sequen(@ @achbined EEG (motor) &
Button—based triage sequence. The first and last imageslirseguence are shown by the
squares in the upper left and lower right of each raster ctisedy.
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