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Evoked Neural Responses to Events in Video

Daniel Rosenthal, Paul DeGuzman, Lucas C. Parra, Senior Member, IEEE, and Paul Sajda, Fellow, IEEE

Abstract—In contrast to static imagery, detection of events of
interest in video involves evidence accumulation across space and
time; the observer is required to integrate features from both mo-
tion and form to decide whether a behavior constituents a target
event. Do such events that extend in time elicit evoked responses of
similar strength as evoked responses associated with instantaneous
events such as the presentation of a static target image? Using a
set of simulated scenarios, with avatars/actors having different
behaviors, we identified evoked neural activity discriminative of
target vs. distractor events (behaviors) at discrimination levels that
are comparable to static imagery. EEG discriminative activity was
largely in the time-locked evoked response and not in oscillatory
activity, with the exception of very low EEG frequency bands such
as delta and theta, which simply represent bands dominating the
event related potential (ERP). The discriminative evoked response
activity we see is observed in all target/distractor conditions and
is robust across different recordings from the same subjects. The
results suggest that we have identified a robust neural correlate
of target detection in video, at least in terms of the stimulus set
we used—i.e., dynamic behavior of an individual in a low clutter
environment. Additional work is needed to test a larger variety of
behaviors and more diverse environments.

Index Terms—Video analysis, electroencephalography, brain-
computer interfaces, audio-visual systems, machine learning,
video surveillance.

I. INTRODUCTION

IDEO surveillance typically involve multi-camera sys-

tems generating streams of data that are monitored by
human operators over lengthy shifts. Operator fatigue and lapses
of attention can significantly reduce monitoring performance.
Additionally, while many operators are well-trained and can be
responsive to subtle cues, the sheer throughput of information,
whether in the presence of single or multiple video streams,
makes it important for each operator to rapidly prioritize his/her
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attention—e.g., when facing multiple dynamic events and deter-
mining whether an observation warrants an alert trigger and/or
further review.

Our aim was to investigate whether non-invasive neu-
roimaging can be used to detect neural correlates of rapid
detection and recognition of events of importance in a video
stream. Previous work by our group and others has shown that
this type of “neural-tagging” is possible for static images when
presented via rapid serial visual presentation (RSVP) [1]-[4].
In the static image case, images containing objects of in-
terest evoke responses in the operator’s electroencephalogram
(EEG), and these evoked responses could be decoded and used
to construct a “neural-tag” for prioritizing the data stream. In
addition, neural tagging was seen to be more consistent than
a behavioral response, such as a button press, particularly in
cases where exploitation time was long [5].

We previously demonstrated that neural signals associated
with detection of static images could be used to accelerate
broad-area search in geospatial imagery [3]. To do so, we
developed an EEG-based brain computer interface (BCI) which
coupled the neural evoked responses and computer vision.
Using the RSVP paradigm, images were presented to viewers
at high frame rates (510 frames per second) and subsequently
ranked based on a classification score.

In the case of video, one may be interested in not just objects,
but events defined by how objects move over time. For example,
when monitoring activity at a busy train station, one may be
interested in events where a person wanders in the station and
then drops a bag and leaves. The event is defined not simply
by the presence of a person, but also their dynamic behavior as
captured by their motion in the video.

There has been relatively little research done using EEG to
investigate neural signatures of target and/or anomaly detec-
tion in either real-world or simulated video imagery (for ex-
ceptions see [6]-[8]). A far greater amount of work has been
conducted using functional magnetic resonance imaging (fMRI)
imaging [9], [10]. However fMRI is an expensive and non-
portable imaging modality, which is likely to have minimum
utility in practical and operational environments. In addition,
the activity measured by fMRI is a sluggish (i.e., low pass) in-
direct representation (i.e., blood flow/volume) of neural activity
in the brain and, as a modality on its own, is less well matched
for studying the constituent processes of rapid decision-making.

We specifically focused on an initial investigation of whether
neural correlates of these complex dynamic events of interest
can be measured and decoded from EEG. Compared to static
imagery, video involves evidence accumulation across space
and time, thus making signatures of targets and anomalies more
complex while also providing additional sources of sensory con-
text in the input stream. In addition, we aimed to build a plat-
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Leave Without Bag

Fig. 1. Three frames taken from stimuli from three selected video events. In “Leave Without Bag” videos, actor enters the frame from one of four directions
(inside, left, right, front) and places the bag in center of the scene. A target event is defined by the actor then leaving the bag behind and exiting the frame in one of
the four directions. In “Leave With Bag” videos, the actor performs the same actions from the prior case, but picks the bag up again before leaving the scene—i.e.
this is a distractor event. For all non-bag target events (e.g. “Look At Watch” shown above), the actor enters without a bag, performs a given action, and then leaves

the scene.

form for conducting future experiments in which video feeds
could be tagged with neural labels, and where such labels could
be ingested by a machine vision system to provide a synergistic
brain-machine interface for video analysis. It is important to
note that the scope of this project was not to perform an exhaus-
tive evaluation of the types of actions or spatio-temporal events
that may be reliably detected from neural signatures, but rather,
to provide an initial feasibility assessment on a few examples.
An important aspect of our previous work with static imagery
is the rapid presentation of images which accomplishes two im-
portant goals: 1) it significantly accelerates the inspection of the
data without significant loss in detection performance, and 2)
more clearly defines the moment of visual detection and thus
strengthens the signal-to-noise ratio for the neural signals de-
tection task. Similarly, we centered our work around the accel-
erated presentation of stimuli to the viewer. Accelerated video
playback shortens the time required to review video footage (al-
ready an accepted approach in video surveillance). In addition,
we hypothesized that neural signals are more salient as the mo-
ment of subjective event detection is better delineated in time.

II. METHODS, ASSUMPTIONS AND PROCEDURES

A. Stimulus Set Design

Experimental stimuli were created using the Object Video
Virtual Video Tool (OVVVT) [11], a software package that
places virtual actors in realistic simulated environments. The
OVVVT was chosen not only because it offered surveillance-re-
lated assets and maps, but also because it gave experimentalists

strict control over video content and actor behavior. However,
our approach and platform (see below) are agnostic to the
simulation environment chosen.

In the course of the study, several iterations of stimuli were
developed. Specifically, early stimuli included multiple actors in
a wide context to enable the simultaneous analysis of saccadic
activity and neural activity. However, there was a need and op-
portunity to constrain the experimental paradigm and elucidate
neural components in an incremental fashion. Thus, the stimulus
set evolved to focus on a narrower field of view requiring min-
imal gaze changes, reducing eye-movements as a confounding
factor.

The finalized stimulus set focused on a single actor that would
enter and leave the scene from any of several predefined direc-
tions in the context of a train station entrance (Fig. 1). In addi-
tion to leaving or entering the scene, the actor could perform one
of several activities which occurred in the center of the scene.
The activity occurred in the center of the scene. As a result,
gaze was relatively constrained and ocular activity minimized
to facilitate subsequent data analysis, though we still recorded
electrooculogram (EOG) for additional removal of eye move-
ment related confounds. The actor could be any of 7 predefined
characters, each of which differed in physical attributes. Two
characters were similar in their appearance while others varied
more widely. Videos were annotated manually using the ANVIL
Video Annotation Research tool [12].

An important aspect of the presentation was the increased
presentation speed, with the dual goal of increasing viewing
efficiency and more clearly defining the relevant event time.
Defining events are relatively brief in this fast playback (<1 s),
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but they are flanked by extended periods of actors waiting, or en-
tering and exiting the scene. Importantly, without these flanking
periods, the short event may not be detectable by the viewer.
Thus, while the event is brief, the defining characteristic is still
extended in time and required for reliable detection. Neverthe-
less, the brief events are expected to elicit time-locked evoked
activity in the EEG.

B. Experimental Procedures and Tasks

Two data collections were performed with the same subjects
(N = 8) for each collection. This enabled data analysis to be
performed across two time points; however one subject was un-
able to return for the second experimental session. For the pur-
pose of cross-session analysis, this subject’s data was removed.
During each data collection, and for each participant, the EOG
was recorded to measure eye movements that might produce ar-
tifacts in the data analysis. For the EOG, sensors were placed
below the eyes and near the temples to record horizontal and
vertical eye movements as well as blinks.

The first experimental session used two identical stimuli sets
with the same target activity but involved two different reporting
tasks. Each participant viewed 25 blocks of randomly selected
clips, where each block contained exactly ten 30 second clips
and the prevalence of target clips was a random 3 to 5 per block.
During breaks between blocks of videos, subjects gave a re-
sponse that depended on the task they were performing (Table I)
and then immediately continued with the next block.

The stimulus set consisted of “Leave Without Bag” and “Take
Bag” clips, and participants were instructed to internally iden-
tify—no explicit behavior responses such as a button press or
eye movement—the moment in time when the actor left the
scene without the bag (i.e., leaving the bag behind was the target
event). In the first session of the data collection, subjects were
instructed to count the number of target events (Task A). In the
second part of the data collection, the video clips could involve
any of 6 actors. At the end of each block, the full bodies of 4
characters were presented for a brief time interval, interspaced
with a mask consisting of a grey screen. One of these actors
had not performed in a target video during the entire block.
Participants were asked to report which of the 4 presented was
this character—the subject had to identify the “innocent” actor
(Task D). This latter task was more complex in that it required
a subject to hold the actors in memory so as to determine which
actor did not perform a bag-drop.

The second experimental session involved three stimulus
sets. The first set was the bag drop vs. bag pick up set used
in the first data collection session (Task B). This set served to
analyze intra-subject reproducibility across two time points.
The second stimulus set consisted of the first set, expanded with
additional distractor clips of a single actor walking through the
scene with or without the bag (Task E). The final set consisted
of entirely different video clips, each still 30 s long, involving
an actor performing one of five tasks: walking (without a bag),
stretching, waving, looking at his watch, tying his shoe laces.
The purpose of the second and third set was to analyze the
extent to which neural components observed in the first data
collection remained stable in the presence of additional dis-
tractor events, and with different activities as targets (Task C).

TABLE I
TARGET AND DISTRACTOR EVENTS USED IN ANALYSES

Target Distractor

Task Event Event Rationale
Base Comparison
A Leave Bag Take Bag (Session 1)
Repeatability
B Leave Bag Take Bag (Session 2)
Look at Stretch, Tie o
. Generalization Across
Watch Shoe and either .
C Different Target Events
or Look at Watch (Session 2)
Wave or Wave
Generalization Across
Different Task
D Leave Bag Take Bag Conditions
(Session 1)
Take Bag Generalization Across
+ Wider Variety of
£ Leave Bag Additional Distractor Conditions
Distractors (Session 2)

For all sets in session two, participants were asked to count the
number of bag drop events. For Task C, four participants were
asked to pay attention to events where the actor looks at his
watch, and the remaining subjects were asked to pay attention
to events where the actor waves. Waving and looking at one’s
watch involve similar movements in early parts of the activity,
requiring the participant to maintain attention. As in the first
data collection, all clips were presented at an accelerated pace
of five times the original video capture speed.

A summary of the different tasks given to the subjects is given
in Table I. In the simplest case (Task A) subjects were instructed
to count the number of occurrences of a bag drop against a back-
ground of a majority of bag pick-ups. The counting intends to
assure that subjects remain attentive for the duration of the trial.
This experiment was repeated in a second recording (Task B)
to test for within-subject reproducibility, i.e., how robust are the
features and results. Note that the activities performed by the ac-
tors differ, by definition, in their low-level movement character-
istics (the different ways in which the actor moves when the dif-
ferent actions are performed). Previous work with EEG evoked
responses suggested that the low-level movement features were
not expected to be discriminative. Nevertheless, such low-level
differences were specifically controlled for by using a more di-
verse set of targets and distractors in Task C and E, respectively.
Finally, one may argue that counting is not a particularly mean-
ingful task in the context of surveillance. In Task D subjects
were instructed to remember which actor did not leave a bag be-
hind. Thus, a more operationally meaningful assignment would
be tested for its effects on the results. Similar to counting, this
task requires one to maintain a memory of the past events, but
in this case, the memory content is arguably more meaningful.

Note that all task definitions allow verification that the
subjects detected all relevant events i.e., reported the correct
number of target events (Task A, B, C, E) or reported the cor-
rect actor (Task D). Initially various presentations speeds were
explored and eventually converged towards 5 times real-time,
which still permitted nearly perfect subject performance. Near
perfect, but not 100% perfect performance is also important to
maintain constant attention, as subjects are prone to lapses in
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Fig. 2. Group results (N = 8) across different target vs. distractor events (panels are labeled by the event definition defined in Table II). Each panel represents
an analysis from 250 ms pre-stimulus to 1250 ms post-stimulus (stimulus onset at time 0 ms). The first and third rows represent the F-statistic computed across
all channels and subjects. The green line represents statistical significance at p = 0.01, estimated via shuffle statistics. Inset represents average scalp difference
activity at times indicated by dotted vertical lines. Second and forth rows represents z-scores as a function of time plotted for each channel. All z-scores representing
p < 0.01 (two-tail) are shown in color. Figures are labeled to correspond to conditions described in Table 1.

attention if the task is too easy or too hard. Other than that, the
approximately even rate of occurrence of targets assured that
targets and distractors receive an equal amount of attention.
Importantly, this was achieved without requiring a button
response every time an event occurred. A button press is known
to elicit a strong evoked response in the EEG [13] and thus
would severely confound the detection performance based on
cognitive processes alone, which was the primary goal of this
research effort.

C. Data Analysis Methods

The EEG was recorded using a BioSemi ActiveTwo system.
Subjects wore a standard 32-electrode cap configured in the in-
ternational 10/20 system. In analysis, EEG was downsampled
from 2048 Hz to 256 Hz, high-pass filtered at 0.5 Hz to re-
move baseline drift and notch filtered at 60 Hz and 120 Hz to
remove line noise. Electrooculogram (EOG) was recorded with
six auxiliary electrodes and eye-movement artifacts were lin-
early regressed out of the processed EEG. Epochs from each
video were extracted from each video clip, time-locked to the
specific salient events (Table I).

Both event-related responses as well as oscillatory features
in the EEG that would be discriminative of a target event from
a non-target event condition were investigated. Several defini-
tions of the target and non-target events were considered, all
of which were tested with the same data analysis methodology.
To explore single-trial ERP differences for each case, hierar-
chical discriminant component analysis (HDCA) was used. To

briefly summarize previous work, classifiers are trained by com-
bining spatial and temporal weights to maximize differences
between the putative current sources detected in EEG during
targets and non-target epochs. Firstly, spatial weights are com-
puted as to maximally separate a weighted average of electrode
potentials between the two conditions. Once spatial coefficients
are found, optimal temporal weight vectors for temporal win-
dows of 100 ms can be computed. In other words, HDCA es-
timates a series of linear spatial filters that are discriminating
at specific times in the epoch relative to the stimulus and lin-
early integrate these across time within an epoch. These epochs
used only post-stimulus activity, with epochs classified between
100 ms and 1100 ms. This methodology is well established, par-
ticularly with respect to its utility in identifying discriminative
components in the EEG [3], [14], [15].

III. RESULTS AND DISCUSSION

A. Analysis of Trial-Averaged ERPs

Differences in event related potentials (ERPs) between target
events and distractor events were analyzed. Fig. 2 shows these
results averaged across the group of eight subjects. A clear dif-
ferential activity was found in the base condition (Task A in
Table I) which peaks at 300 ms post-stimulus and is right later-
alized in occipito-parietal electrodes. This differential activity is
robust across recording sessions (compare Fig. 2(A) and (B)).
Interestingly, this activity is very similar in timing and scalp
topology seen in a static image case, though spreading slightly
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Fig. 3. Individual subject results (N = 8) across target vs. distractor events for Task A (labeled provided in Table I). This figure follows directly from Fig. 3,
where the first and third throws represent the F-statistic and second and fourth show corresponding z-scores for each channel.

more dorsally (compare to figures shown in [16]). Since the pro-
cessing of visual motion would typically result in differential
activity in more dorsal areas of the occipital lobe, this finding
might reflect an integration of both form and motion informa-
tion in detecting the target behavior. When the target behavior
is changed from a bag drop case to another behavior, such as
looking at one’s watch or waving (Fig. 2(C.1) and (C.2), re-
spectively), the lateralization was less pronounced, though dif-
ferential activity is still clearly occipito-parietal. When the task
changes, and instead of simply counting the number of bags left
behind the subject must report which actor did not leave a bag
behind (Task D), the same right lateralized occipito-parietal ac-
tivity is seen, also at approximately 300 ms post-stimulus. In-
triguingly, there is pre-stimulus activity that is discriminative.
However, this result is completely consistent with the task, since
the subjects did not need to count bags left behind, instead they
only needed to pay attention and remember whether an actor
ever left a bag behind. Thus as the experiment progressed in time
there was potentially discriminative information as soon as the
actor entered the screen. This is reflected in pre-stimulus differ-
ential activity (Fig. 2(D)). Finally, in terms of an ERP analysis,
the weakest differential activity was observed when additional
distractors were added (Fig. 2(E)). It is interesting, however,
that when all sensors were integrated in the single-trial anal-
ysis, single-trial discrimination accuracy for the added distractor
case was not significantly different from the base condition (see
Fig. 4). Note also that Task E cannot be solved based on simple
low-level movement features, ruling out the possibility that the
detected neural signals reflect simple stimulus differences. In
summary, we conclude from these trial and group averaged re-

sults that there is potentially information in the EEG that could
be decoded single-trial for labeling the video.

Fig. 2 shows a summary of the activity for all tasks by av-
eraging across subjects for each task—this is the conventional
“grand average” taken in EEG in particular if one is interested
in the spatial distribution of evoked responses, which are highly
variable across individuals due to variations in skull anatomy
(see e.g., [17]). To provide an appreciation of the robust-
ness/variability of this activity across subjects we display in
Fig. 3 the same data for individual subjects for one of the tasks
(Task A). Considering typical across-subject variability these
spatio-temporal patterns of evoked responses are remarkably
similar across subjects.

B. Analysis of Single-Trial ERP Differences Using HDCA

On the whole, the single-trial classification accuracy was sub-
stantially above chance (Fig. 4). While average classification
performance decreased between sessions for the first experi-
ment, it did not do so significantly (A vs. B). This suggests that
the evoked responses classified are repeatable, given that two
experimental sessions were conducted several weeks apart. The
“Who Is Innocent” task had the strongest classification of all
groups. It is most likely the case that the task was more engaging
to viewers, leading to more reliable evoked responses across the
subject group. Furthermore, this performance was independent
of the pre-stimulus activity discussed earlier (A vs. D). The in-
clusion of additional distractors from the task performed in A
and B did not significantly impact the results of the classifica-
tion, though it did result in a small improvement in average AUC
(B vs. E). Finally, the non-bag events did not yield as high clas-
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p-value for paired t-test across two sessions). (Who is innocent): Results show that this task results in better single-trial discrimination relative to the counting tasks
(conditions A vs. D) with the “who is innocent” having an average AUC > 0.90. (Additional Distractors): We found no significant difference when additional
distractors were added. This is despite that fact that the trial averaged ERP analysis indicated less differential activity between target and distractor events when
augmenting with additional distractors. (Watch 4 Wave): Discrimination of target events when they were defined by the actor looking at their watch or waving
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sification accuracy. This may be a result of greater variability
as to where the events were locked in time. This may also be a
task-related effect, similarly to the improvements seen in task B.

To assure that the detection performance reported here is
statistically significant, and to investigate significance for
individual subjects, we performed a bootstrap analysis (Fig. 5).
Labels were randomized, classifiers trained, and AUC per-
formance computed using leave-one-out cross-validation in
an identical fashion to the original data. This was repeated
(N = 1000) to provide a distribution of AUC values under the
null-hypothesis (no difference in the data). The histograms of
these shuffled AUCs indicate that in all instances performance

is above the 95% confidence level (except for 2 subjects in
Task C). Incidentally, note that all the analysis performed with
the HDCA was done on data from individual subjects, i.e., data
for classification was not combined across subjects.

C. Analysis of Trial-Averaged Spectral Power Differences

A frequency domain analysis was performed for the different
conditions outlined in Table I. In general, we find little consis-
tency in the differential activity computed via differences in os-
cillatory power for target vs. distractor events (Fig. 6). The pos-
sible exception is in the low frequency bands (1-3 Hz delta and
4-7 Hz theta). Cortical theta has been implicated in perceptual
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Fig. 6. Group analysis (N = 8) showing significant (p < 0.01) spectral
power differences (ERSP) between target and non-target events. Panels are la-
beled with conditions as defined in Table I.

decision making as well as memory and retrieval [18] and it is
possible that these differences reflect this type of activity. Partic-
ularly in Task D, where the subject must remember actors who
left bags behind, we see differential activity in the theta band at
300 ms to 500 ms post-stimulus, which may reflect this element
of the task—i.e., memory. Although there were spectral power
differences in higher bands (alpha, beta, etc.), they were not re-
producible, even across tasks A and B, which consisted of the

same stimulus set. By and large the differential activity in the
oscillatory power is less robust than in the ERPs.

Additionally, Common Spatial Pattern (CSP) [5] analysis was
performed on the data. However, no stable components were
found across any of the frequency bands that could reliably dif-
ferentiate target from distractor events.

IV. CONCLUSION

We found that neural activity discriminative of target vs. dis-
tractor events defined by actor behavior in simulated video se-
quences. Discriminative activity is largely in the time-locked
evoked response and not in oscillatory activity, with the ex-
ception of very low EEG frequency bands such as delta and
theta, which likely simply represents those bands which domi-
nate the ERP or are simply artifacts. The discriminative evoked
response activity we see is observed in all target/distractor con-
ditions and is robust across different recordings from the same
subjects. This suggests we have identified a robust neural cor-
relate of target detection in video, at least in terms of the stim-
ulus set we used—i.e., dynamic behavior of an individual in a
low clutter environment. It is important to note that the target is
defined not just by static features, as in previous work [1]-[3],
but an integration of static and dynamic features which implies
an integration of form and motion in accumulating evidence to
“decide” if/when a target behavior is present.

Though the discriminative activity in the EEG is significant,
it is less clear what the neurological source of this evoked re-
sponse is. One explanation, at least given the timing of the com-
ponent activity, is that we are observing a response similar to the
P300[19], often typical in these types of target vs. distractor sce-
narios. More recent work has shown that the P300 may in fact
represent a more general process of evidence accumulation in
decision-making [20]. However the scalp topology is not typ-
ical of the P300 and instead is more consistent with activity that
one would see in a face discrimination task, that involves acti-
vation of the fusiform face area, where discriminative activity is
usually observed in ERPs over electrode POS8 (right lateralized
parietal-occipital activity) [16], [21]. Interestingly, the activity
is also slightly more dorsal and includes motion selective areas
such as MT/V5. One hypothesis is that the activity we see repre-
sents the integration of motion (MT/V5) and form (person/face)
during the evidence accumulation process. Further work, using
neuroimaging modalities with a better combined spatial- tem-
poral resolution, such as simultaneous EEG/fMRI, would be
needed to test this hypothesis.
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