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A feed-forward spiking network represents a non-linear transfooméhat maps a set of input
spikes to a set of output spikes. This mapping transforms the joint pitd@balistribution of
incoming spikes into a joint distribution of output spikes. We present arritiigofor synap-
tic adaptation that aims to maximize the entropy of this output distribution themelating
a model for the joint distribution of the incoming point processes. Thenilegrrule that is
derived depends on the precise pre- and post-synaptic spike timingen ¥kained on cor-
related spike trains the network learns to extract independent spike tinaireby uncovering
the underlying statistical structure and creating a more efficient regiegsm of the incoming
spike trains.

Introduction Rather than maximizing output entropy directly we pro-
pose to maximize the likelihood of the input spike-times un-
Imagine that the goal of a biological neural network is toder the assumption that the output follows the maximum en-
maximize the information it communicates about its inputs.tropy distribution for a given rate, i.e. the output is a Bors
If the transformation is deterministic then maximizing the process of fixed rate. This Maximum Likelihood (ML) ap-
information transmission is equivalent to maximizing the e proach maximizes the information transfer in the network,
tropy of the outputs. This problem has already been solve@nd has the additional advantage of controlling the rate of
for abstract rate models where information is encoded in théiring, and thus energy consumption, of the output neurons.
firing rate of a neuron for feedforward analog networks andThe resulting algorithm functions by maximizing the sensi-
leads to standard independent component analysis (Anthorivity of the output spike train to variations in the inpuflep
& Terrence, 1995). Here we develop this idea for more redrain subject to limitations on channel capacity.
alistic networks of spiking neurons which can in principle To demonstrate the generality and utility of this algorithm
encode information either in the precise times of spikes owe then show that it is capable of batemultiplexing a spike
via a population code utilizing firing rates. That is, for & se timing code as well as recoding a correlated spatio-tenipora
of input spike patterns we address the question of how t@opulation code so as to make it more efficient. In the first
manipulate connection strengths between determinisilic sp case, each input synapse carries a superposition of several
ing neurons so as to generate output spike trains with thdependent point processes (sources), and, by analogytb bli
maximum entropy. In particular, detailed learning rules ar source separation, the network learns to extract theseesur
derived for the general Spike Response Model (SRM) (Gerand send each to a different output neuron. In the second
stner & Kistler, 2002), a generalization of the Integrabela  test case, input spikes are generated by a set of inhomoge-
Fire neuron. The analysis is restricted to a single layet-fee neous Poisson processes which respond to the position of a
forward network and relies on the assumption that neuronparticle in motion. This leads to input spike trains which ar
fire at a rate which is relatively low compared to the timehighly correlated and thus redundant. In this case learning
constant of the refractory periods of the neurons. It differ decorrelates these inputs and creates a sparse representat
from previous information theoretic models in that it con- of position.
siders a network of deterministic neurons rather than a sin- In both cases, we note that the objective function for learn-
gle isolated stochastic neuron (Bohte & Mozer, 2005; Toy-ing seeks to maximize the sensitivity of neurons to the spike
oizumi, Pfister, Aihara, & Gerstner, 2005). A brief accounttimings of their inputs. This is consistent with increasing
of our model appeared in conference form focusing on theevidence that learning in real neurons is highly sensitive t
sensitivity of spike timing (Bell & Parra, 2005). Here we the relative timings of input and output spikes (Dan & Poo,
establish the connection between increasing sensitivity a 2004) via Spike Timing Dependent Plasticity (STDP) learn-
maximizing information flow, and demonstrate how this cri- ing rules. Unfortunately, our result does not replicateoéll
terion can be used to extract common spike pattern from ¢he empirical data, but seems only to capture the causas halv
mixture, as well as re-code a correlated population code intof the STDP learning curve. This issue is addressed in the
a more efficient representation. Discussion section.
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This work gives a rigorous derivation for how to max- alent to maximizing the likelihood of the observed pattefrn o
imize spike-timing entropy in a deterministic spiking net- input spikes under the assumption that these spikes were gen
work, and shows in particular how to maximize the sensi-erated by applying the inverse mappifg* : (t',i') — (t,i)
tivity of a point process obtained from a threshold crossingo output spikes generated from an independent Poisson pro-
mechanism. However, to facilitate the reading of the maincess with a given rate.
text a large portion of this material has been relegateddo th  Specifically, if we definey(t',i’) as the probability den-

Appendix. sity function of a selection of independent Poisson praegss
then
Likelihood of a Spike Train q(t,i") =]a(m), )
|
A deterministic network of spiking neurons such as ayhere
single-layer feedforward network of Integrate-and-Fiezin ANy
rons can be thought of as a transformation that maps a set of q(n) = e, ®)

input spike trains into a new set of output spike trains. The drt is th iK t of thith output A
spike trains of all the input neurons can be representedey t gnan; 1S the spike count o output neuron ang 1S a
firing times and the identities of the neurons firing. We will ree parameter which gives the desired mean firing rate of the
denote these variables tandi — a pair of vectors each with neurons in th? output .Iayer (see Appgnd|x B)'.

one element per spike, so that the time of ktfespike isty The objective function for learning is then given by

occuring in neuroy. Thus, the timing vector is composed of D (p (t’ i’) I (t’ i’))
real numbers, and the neural identities vector is compoked o KL ’ s
integers which represent neuron indices. For a deterrgnist = (—logp(t,i") +logq(t’,i')) (6)

mapping of spike trainsf : t,i — t’,i’, the likelihood of the
output spikesp(t’,i’) is given in terms of the likelihood of
the input spike9(t,i) as (see Appendix A):

<—Iogp(t,i) + % Iog|TTT] +logq (t’,i’)> (7

L T —1/2rs Now, the first term in this sum is simply the entropy of the in-
pt,ino > T T[7p(ti). (1) putspike patterns and is independent of the parametersiwhic
(th)eSt,i") map input to output spikes. Thus minimizing divergence re-
quires only a consideration of the second and third terms of
the equation directly above. Rearranging some terms, we
obtain the log-likelihood of the input spike times under the
maximum entropy model

The sum in {, i) extends over all the possible inputs that
lead to a specific outputt’(i’), i.e. the set of solutions
S{t',i") = {t,i|(t',i") = f(t,i)}. Matrix T captures the sensi-
tivity of output spike-times vs. input spike-times for a giv

set of input and output neuroms’, and is thus a Jacobian L= (logp(t,i)) = D (p(t’ i’) ||Q(t/ i’))
matrix given by ’ N ’ ’
/ .
T= thT ) +<2Iog|TTT|+Iogq(t’,|’)>

For a network of noiseless Spike Response Model (SRM)
neurons (Gerstner & Kistler, 2002) this sensitivity matrix
is derived in Appendix C. In the case of an over-complete ) )
transformation, where the number of input spikes generate¥here we have used the fact that the KL divergence is a
a larger number of output spikes, this map is likely to be in-Positive definite quantity. This restates the well-knowet fa
vertible such that the observed output could only have beeHat minimizing KL divergence is equivalent to maximizing
generated by one specific input. In this case the sum corf lower bound on the log likelihood.. In this case we are
tains a single term giving an expression equivalent to whafi€aling with the likelihood of the observed input spike-sn

Y

<;Iog|TTT|+Iogq(t’,i’)> , (8)

was derived in (Shriki, Sompolinsky, & Lee, 2000): resulting (via the inverse majp 1) from a set of independent
Poisson processes of given rate.
p(t',i") O \TTT\‘l/Zp(t,i). ©) The second term of the resulting objective function in

Equation (7) captures the sensitivity of the likelihood on
Since the elements of the matiiX T grow with the num-  spike timing. Maximizing this term will make the output

ber of spikes in the output layer, maximizing entropy diect spike-times maximally sensitive to the timing of the input,
using Equation (3) can result in a network which fires at veryand thus, insure that the temporal information contained in
high rates. This is neither biologically plausible nor cafip the input spike-times is transmitted optimally. The second
ible with the low firing rate assumption which will be used term encourages Poisson distributed spikes in the output ne
to simplify the learning rule. Instead, we choose to mininiz rons and — as we will see in Section — leads to an Hebbian
the Kullback-Leiber divergence between the distributién o term that controls the overall spike rate.
the spikes observed in the output layer and maximum entropy To maximize this lower bound we derive now the gradient
distribution for a set of point process with a given rate, i.e of these two terms with respect to the weights of the spiking
independent homogeneous Poisson processes. This is equietwork.



INFOMAX FOR SPIKING NEURON 3

dt - d will change as a result. This change in the membrane poten-
tial leads to a change in the time of threshold crossitjg

The contribution to the membrane potentdl, due todt; is
(Ouk/0t )dt;, and the change idu corresponding to a change
N dt; is (duy/at;)dt,. We can relate these two effects by noting
that the total change of the membrane poterdialhas to
vanish because is defined as the potential at threshold. ie:

threshold potential

greil

u(t) A
(NL

resting potential

output spikes

auk auk
4 du= —-dt; + ——dt =0. 10
input spikes | | | | | at(( K + at| ! ( )
Figure 1.  Firing timet, is determined by the time of threshold

crossing. A change of an input spike-tindg affects, via a change  This is thetotal differential of the functionux = u(t;, {t;}),

of the membrane potentidl the time of the output spike ;. and is a special case of the implicit function theorem. Rear-
ranging this:
. . ey s /
Spike Time Sensitivity d _ Oouc /ouk _ W Ry /. (11)

_ dy oy / oy
For two spikes.

We will now discuss how the timing of a postsynaptic For over-complete N — M spike mappings

(output) spike is affected by the timing of presynaptic (it)p
spike. Spikd, occurring in presynaptic neurgn may have
an effect on spiké, occurring in neurotiy, if they are con-
nected by a synapse with weightg. Since we are primarily
concerned with the dependency between different spikes wi
will adopt a notation that omits explicit neuron index: Weus

W, the weight affecting output spikedue to input spike, low firing rate is in Appendix C. It yields a learning rule in

to be the correspondingi; = wi,j, - . . . : .
Inthe simpleset vers?gH of thlé“Spike Response Model (Ger\-NhICh every interaction between a presynaptic spikead

stner & Kistler, 2002), spiké has an effect on spikie that a postsynaptic spike g causes a weight change:
depends on the time-course of the evoked EPSP or IPSP, allogT™T| T
which we write asRg (t—t )_._ In general, thisRy mod-_ AWy O 22— 1 = LG ([TT#]kl _ [TTT#]kk) . (12)
els both synaptic and dendritic linear responses to an input oWy Wy
spike, and thus models synapse type and location. Note that, T4 _ 5 o
technically,Ry includes refractory effects and is thus also aWhereT ” represents the pseudo-inverseTof. This is a
function of the time of the last spike of neurkn However, ~Non-local update involving a matrix inverse at each step. In
since we ignore this effect for the purposes of learnings thi theéinfomaxcase, such an inverse was removed by the Natural
dependence is not included explicitly here. See Appendix ¢cradient ransform (see (Anthony & Terrence, 1995)), butin
for details. For learning, we need only consider the value of'€ SPike timing case, this has turned out not to be possible,
this function when an output spikk, occurs. ecause of _the complexity introduced into fhematrix by

In this model, depicted in Figure 1, a neuron adds upgn€Ra termin (11).
the post-synaptic potentials evoked by all input spikes un- . o
til its membrane potentialy(t), reaches threshold at time Neuron index vs spike index
t.. This potential we will, again for convenience, write as

To maximize the information transfer in a possibly over-
complete mappingM > N) for a given set of spikes, we
must, according to (8) maximize the log-determinant of a Ja-
obian matrix,TTT, where the entries of are the timing
ependencie$y = dt; /ot. The calculation of this gradient
for the full Spike Response Model under the assumption of a

Uk = Ui (t, {t/}), and it is given by a sum over spikes We have denoted the synaptic weights for each neuron pair
as lower casavij, and the synaptic weights for each spike
Uy = ZW[(I Ra(ti—1). (9)  Pairas upper casdjy. These two matrices can be related by
W =1wJ. (13)

This notation may seem unfamiliar, but it has the advantage

that the sum over different input neurons and input spikedVlatrix I has one column for each neurband one row for

is combined into a single sum over spikesvhile avoiding ~ €ach output spik& with Iy = 1 if spikek belongs to neuron

cumbersome double indices. The notation exploits the defi- and 0 otherwise. Matrid has one column for each input

nition, Wy = wi, j,, and is discussed in more detail in Section . Spikel and one row for each input neurgrwith J;; = 1 if
To compute the entries of the matfixand then maximize ~Spikel belongs to neuror). With this notation the corre-

timing sensitivity, we need to determine the effect of a $mal sponding weight update for neuron pafsgw can be com-

change in the input firing time on the output firing time;. ~ Puted from the gradient update for spike paisV given in

(A related problem is discussed in (Banerjee, 2001).) Wher§12) with

t is changed by a small amoudt; the membrane potential Agw = 1T/ WIT. (14)
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Integrate & Fire Model propagate these patterns, the neurons wmiemtiltiplex these
spike rate , seale vsEPSP ampiude (W) inputs using its threshold non-linearity. Demultiplexiigy
< the ‘point process’ analog of the unmixing of independent
inputs in Independent Component Analysis. We have been
able to robustly achieve demultiplexing, as we now report.
We simulated a feed-forward network with 10 Integrate-
} it : . and-Fire neurons and inputs from 10 presynaptic neu-
CT it ° ? e any e rons. Time was discretized innk bins (the SRM does
Figure 2. Output firing rate as function of input firing rate (left) not suffer from numerical problems associated with tempo-
and strength of EPSP or synaptic weight (right) for an Integrateral resolution); firing threshold was set constant &:=
and-Fire neuron. Rates are determined by the number of spikek; post-synaptic potential was set taR(t,t) = R(t) =
within a 500 ms observation window. (1—Ts/Tm) ~L(exp(—t/Tm) — exp(—t/Ts)), With T, = 20ms,
Ts = 5ms; and hyperpolarizing after potential ta(t) =
] o —exp(—t/t;), with T, = 30ms (Gerstner & Kistler, 2002).
Spike Rate Sensitivity Learning combines the gradients (12) and (18); =
) ) - Aiwij + Aowij, computed on the spikes generated during
When computing the gradients (12) the number of spikesnany sample intervals each of 500 ms in length. All time
is fixed. Updating synaptic weights will affect the timing of yerivatives were computed numerically by differentiating
output spikes, but possibly also the number of output Spikesneighboring time points. The paramefewhich controls
In this section we deal with this dependency explicitly, andine output spike rate was set to the average spike rate of the
derive an approximate expression for the gradient of the seGnpyt. The network learns to demultiplex mixed spike trains
ond term in Equation (8). Unfortunately, unlike for spike \yhich were generated randomly, as shown in Figure 3. For
times there is no simple parameterized mapping from iNpu§ small number of neurons (up to 5) this demultiplexing is a
spikes to output spike counts. However, Figure 2 demonyggpyst property of learning using the gradients (12) ang.(16
strates that a simple empirical relationship exists betviee However the final result of training is sensitive to the ini-
number of output spikeswithin a time window as a function - y5jization of the weight matrix. As the number of neurons
of the number of input spikesi and synaptic weighte/ for ;1 reases we find only partial demultiplexing. However, we
Spike Responce neurons of this type. Specifically, the spikgpain reliable results if the weight matrix is initializeas in
raten is well approximated by a linear relation In batran . this example, with the transpose of the mixing matrix. This
w. Since the Integrate-and-Fire model combines the inpuficates that the training may be impeded by the existence
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from multiple neurong additively it is fair to write of suboptimal local minima of the cost function. We have
chosen this specific example as the correct result for more
n O wijm; (15)  complex multiplexing is not easily visualized.
]

so that the contribution to the gradient weight update due tdPopulation Recoding

the spike rate can be computed as
In a second experiment, input spikes were generated from
0yilogq(ni) N 16 a population of independent Poisson neurons with Gaussian
oW = —g(m)m;, (16) tuning curves which respond to the position of a particle,
s€ [0,10), moving on a periodic domain (i.e. a particle mov-
whereg(n) = —dlogq(n)/on. Applying Stirling’s approx- ing beyonds= 10 reappears &= 0). The particle follows a
imation® of the factorial, log! ~ nlogn — n, this becomes Brownian motion with positive drift at a fixed velocity. The
g(n;) =~ log(ni/A) and we obtain a simple local Hebbian tuning curve of each input neuron has a preferred position
learning rule reminiscent of the traditionaifomax algo-  which corresponds to the index of that neuron. Tuning curves
rithm(Anthony & Terrence, 1995). Note that when> A are chosen to be sufficiently wide so that nearly simultaseou
this gradient term is negative amgdwill be reduced. In the spikes in adjacent neurons are common. Since the position
opposite case the term is positive amdwill be increased. of the particle is correlated in time and space, strong pos-
Therefore this term acts to maintain the spike rate at a chosdtive correlations exist between the induced spike trams a

Dow; i O

valueA. many spikes seem to be redundant. See Figure 4. Application
of the proposed learning rule with a target firing rate which
Results is half the input rate yields a population code with sharper,
more localized tuning curves. This is achieved by learnimg a
Demultiplexing spike trains asymmetric connectivity which strongly inhibits the firiog

neurons with a preferred particle position through whiah th
An interesting possibility in the brain is that specific ‘pat
terns’ are embedded in spatially distributed spike timihgs 1 This implies that in our simulations weight updates according
are input to neurons. Several patterns could be embedded io (16) are only executed after a sufficiently large number of output
single input trains. This is calledultiplexing. To extractand  spikes has accumulated.
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Figure 3. Unmixed spike trains. The input (center left) are 10

spike trains which are a mixture of 10 independent Poison processe

(top left). The network unmixes the spike train to approximately re- e py——— : o

cover the original. Bottom left panel show the recovered spike train preferred position

Notice that every original spike corresponds to a spike duple in th‘?:igure 4. Population coding of the position of a particle moving

de-multiplexed output. The panels at the right show the mixing (top)y, 5 periodic domain. (Top, left) The 10 input neurons respond

the synaptic weight matrix after training (center) and the product ok firing when the particle is within their receptive field. In this

the two (bottom). example the particle moves from the preferred position of the 3rd
neuron to the preferred position of the 8th neuron within 500 ms.
(Top, right) The synaptic weights after training with 1 h of data.

particle has already passed. Neurons with a preferred posiweight matrix is circulant due to the circular shift invariance of the

tion which lie in the direction of the particle’s motion als@  problem. (Bottom, right) Weights show asymmetric lateral inhibi-

inhibited — so as to reduce the overall firing rate of the outpution. (Top, center) The output spikes give a sparse representation

population — but to a much lesser extent. of the particle trajectory omitting redundant spikes. (Bottom, left

This leads to a more efficient representation of particleand center) Spatio-temporal correlation matrix for input and output
position at any given time. Specifically, we found that lin- neurons showing reduced correlation.
ear Fisher information per spike, as estimated from the vari

-5

Neuron/time
Neuron/time

-10

ance of the Local Optimal Linear Estimator (LOLE) (Shamir 150 (& STOP 50 (®) Gradient

& Sompolinsky, 2001) applied to the entire spatio-temporal " © Y

pattern of spikes, increased by nearly 30%. Thatis, with hal ° _ b

as many spikes we were able to represent nearly two thirds > * ° e ﬁ-" ‘%

of the input information about particle position. This is es ES S o0 ‘4 R iitieseey

pecially compelling since the learning rule was attemptong fsow -50 3'; .

maximize information about spike timing and has no knowl- gl gl e

edge of particle position. . atms) i o sumy ]
Figure 5. Dependence of synaptic modification on pre/post inter-

agi ke Timi ng Dependent Plasticity spike interval. Left (A): Reproduced from Froemke & Dan, Na-

ture (2002). Dependence of synaptic modification on pre/post inter-
Finally, what about the spike-timing dependence of thespike interval in cat L2/3 visual cortical pyramidal cells in slice.

observed learning? Does it match experimental results? Theaturalistic spike trains. Each point represents one experiment.
comparison is made in Figure 5, and the answer is no. Themight (B): According to Equation (12) and (16). Each point cor-
is a timing-dependent transition between depression and p@esponds to an spike pair between approximately 100 input and 100
tentiation in our result in Figure 5B, but it is not a sharp output spikes.
transition like the experimental result in Figure 5A. In ad-
dition, it does not transition at zero (ie: whgn—t = 0),
but at a time offset by the rise time of the EPSPs. The spikesTpp curves, as we discuss in the next section.
response model is inherently causal, a incoming spike can
only affect a subsequent spike. The strength of this depen- Discussion
dency is measured by the sensitivity maffix The learning
rule derived here modifies this dependency. The contribu- In summary, we have started to explore, through thinking
tions to our weight update are as a result inherently causaabout timing sensitivity, how probabilistic learning oftep
Current models that result in non-causal (synaptic adaptat mal information transfer can be achieved in spiking network
for late spikes withAt < 0) currently assume a probabilistic models which are closer to known physiology. This holds
effect due to noisy spike generation (Bohte & Mozer, 2005;the appealing promise of bringing network theories of rep-
Toyoizumi et al., 2005). However, non-determinism in theresentation and spike coding closer to biophysical theorie
spike generating mechanism is probably not the reason fasf dendritic computation, through the infusion of ideasiro
the mismatch between our result and empirically observedinsupervised machine learning. We developed the theory for
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natural to conclude that the inclusion of this feedback wwith
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nally we will include discrete variables to have a transfarm
We are grateful for discussions with Nihat Ay, Michael tion of a joint distribution of discrete and continuous vari
Eisele, Hong Hui Yu, Surya Ganguli, Sophie er, Fabian ables.
Theis and Arunava Banerjee. AJB thanks Redwood col- In the first step we give an alternate derivation of the re-
leagues for many such discussions. sult in (Shriki et al., 2000) for over-complete mappings. A
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mappingy = f(x), will transform a joint densityp(x) of the
inputx to a joint densityp(y) of the outputy as

~ [ axply)p(x

(17)

Since the mapping is deterministic the conditional derisity

given by

oy — £(x))- (18)

p(y[x) =

First note that for a transformation which preserves dimen-
sions, dinfy) = dim(x), the Kronecker delta distribution

around a solutiony, = f(Xo), is transformed as

-1

B0y yo) = |57| 80 19)

where| y\ = J is the Jacobian matrix evaluatedxat To ex-
tend thls to the non-square over-complete case, i.e(\Jimn

dim(x), defineyl andy, as the orientations af, that are
parallel and orthogonal to the column spacé odspectively.
Specifically,y!l = (373)~1/23Ty, and similarly fory using
the orthogonal spac&-. Here the inner product’y com-
putes the projection into the parallel space whiled)~%/2 s

the normalization required to preserve scaling (unit Jecob

determinant|a(y!l,y+)/dy| = 1). With this we can write

Sy—yo) = 13yl —yd)a(y' —vd) (20)
ayl |
X 3(X —X0)d(Y" —V¥3) (21)

d -1
= |amy v e xatyt -viz2)

V25 (23)

(24)

3(X —Xo)3(Y" —Yo)

(X —Xo),

-

ERENINT I

where we have applied (19) to the square transformationstherwiseq(i’|n’ # n’(i’))

In this paper we are interested in a mapping with contin-
uous and discrete variables. Adopting now again the nota-
tion of the main text this mapping ist,i) — (t',i’). Equa-
tion (26) is equally valid if all probabilities are conditied
on some discrete event, for instance the occurrence of some

discrete valueg i’. Therefore,
p(t,i") =3 p(t'li,i")p( @7
|
- T2 p(eli, i) p(i,i') (28)
T teS T,
- 7T p(if ) p(t.i) (29)
T teS T,
- ITTT| (i), (30)
ieS(I,i")tes(t,i")

HereS(i, i") andS (i,i’) are the set of solutions to=t'(t,i)
andi’ =i'(t,i) respectively. For (30) we used the fact that for
a deterministic mapping(i’|t,i) = 1 if i’ is the result of the
map to input (,i), and O otherwise.

Appendix B
Independent Poisson processes

Here we simplify the joint densitg(t’,i’) for a set of inde-
pendent Poisson processes. For a Poisson point process the
times of events are uniformly distributed, hence

q(t’i) Oq(i’). (31)

We now introduce a new variablg), which indicates the
number of spikes that occurred in each neuron during the
observation time window. For any distribution we can write

= 3 a(/In)a(n)

The spike count is deterministically dependenticand
hence this sum onIy includes the term with= n’(i’") since
= 0. Furthermore, when the spike

(32)

y — (yH y+) and again tox — y|- Note that (23) reduces to counts are obtained from independent Poisson processes, th
(19) if the transformation is square and is therefore thegen index vector is uniformly distributed so that:
alization to the non-square over-complete case. By combin-

ing Equations (17), (18), and (24) and executing the integra  d(i’) =

in x it follows (as in (Shriki et al., 2000)) that

(x(y))-

1/2

AN (25)

In the integration we have assumed that the transformation
was invertible so thax(y) is uniquely defined. In case that

q('In’(i"))a(n’(i")) O (33)

= )
|
Combining these Equations we obtain (4) in the main text.

Appendix C
Spike time sensitivity in the SRM

there are multiple inputs that can generate the same out-

puty the integral in (17) reduces to a sum over those so-

Here we give full details of the gradient ascent learn-

lutions (Papoulis, 1991). Denoting the set of solutionswit ing rule for Gerstner's Spike Response Model (Gerstner &

Sy) = {x|y = f(x)} we write

py)B Yy BT
xes(y)

1/2

() (26)

Kistler, 2002), a generalization of the standard Integeate-

Fire model. In this formulation the effect of a pre-synaptic
spike at time; in neuronj; on the membrane potential at time

t is described by a post-synaptic potential or spike response



8 PARRA, BECK, BELL

functionR(t —fi,t —t; )3 yvhich may also'depend' on the time Rq = d—R(t{( Lt 1) (39)
of the most recent spikgin post-synaptic neuroin grr]

This response function is then weighted by the synaptic Nk = a(tli—té) (40)
strengthw;j, which may represent either an excitatory or in- ) ds
hibitory synapses as determined by the sigwgf In addi- e = a(t(( —tg) (41)
tion to the effects of onR, refractoriness is also incorporated ) . : ~
through an additive hyper-polarizing term(t —f;). Thus, U = Nk+ Z\Md Ra + Z\Md Ra s (42)

total membrane potential of neurois given by

« " so that we may represent the recursion relationship of Equa-
Ui(t):rli(t—ti)"‘ZWiHR(t_ti’t_t')' (34 tion (37) as yrep Pos

We have ignored here possible contributions from external Ta = - ] W R}d _
currents which can easily be included without modifying the Nk — Ok + S cWheRie + 3 c WheRie
following derivations. The output firing times and indices S ¢ 5

iy, are defined as the ordered set of times§ and indices for + - K 8k+z.°\M<°Rk° =
which u;(t) reaches firing threshold from below. In the pres- Nk = Dkt TeWheRie + 5 cWheRie
ence of a dynamic thresholfl(t —{;), the output spike times

and indices are defined implicitly by the ordered set of soluy,o

tions to

Ty. (43)

In principle, this implicit expression for the matrixmay
solved by iteration or by simply inverting the square ma-
trix associated with the second term. Unfortunately, tha-co
Iy DN o (4 (t b+ 1+ plex dependence afonk causes this procedure to lead to a
k=t @ d(t-1ty= u'/k(t) =n(t-t)+ ZW'LJI Rt—tst—1) 'rather complicated expression for the learning rule. Téis i

du (t sue can be avoided when the neurons have a low firing rate
Uy (1) -0 (35)(compared to their refractory period), or simply, when they
dt ’ have a weak refractoriness. A low firing rate is not an uncom-

mon assumption in theoretical modes (Gerstner & Kistler,
Note that we have replacddwith t., wheres = s(k) is 2002), and in particular, it is a good assumptiqn for our sim-
the index of output spike precedimgon the same neuron. Ulations. Both of these assumptions imply that 9y and
This results from our indexing scheme which identitieas R are all small compared . When this is the case, the
the time of thek-th output spike regardless of which neuron second term of (43) may be neglected and the derivative of
generated it. We find double indice notation cumbersomdhis equation with respect W is approximated by
and would like to omit therefore the explicit reference te pr

and post-synaptic indéxand | as they result implicitly from 0Tab _ 0 WabRab
spike indexk andl. The threshold condition which defines oM oW | Ua— 34
post-synaptic spike time, can be written in this simplified Rap WapRabSakRa
notation as = Ol
du a=Pa  (Ua—9a))
/. I+ iy — I 4l I sl dl Ytk
it 9 (t—ts) = U =Nt ts)+ZWi<|R(tk tSt—t), it >0, ST {v?/bl J\ﬂ ' (49)
(36) ab al
where we also abbreviatey = uy (t;), and use the capital Therefore, since
W to indicate that this indexing scheme affects the synaptic 1 d
weights as well. See Section for an explanation of the exact T _ -+ TT|_ Try-1
relationship betweew;; andW. Tap = 2dT log [T ] [T(T T ]ab’ (45)
Regardless, for this general modg{ is given by we may conclude that
dt/ duc 09\ "t aug T
Ty=—K = _(_) X 10log|TTT| T [5b| Tal}
dt ot, ot ot T = T Ok Tap | — ——| (46
I k k lI 5 oW ;[ }abakabwab Wa]()
(o)t :
o oy ) atydy = V\% <[T#T]k| —~ %[T#T]kb-rkb> (47)
For stereotype®(t,t), n(t), andd (t) we now define Ty
iR = W (M= [TT¥ ) - (48)
) (38)

dt



