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Abstract

Traditional analysis methods for single-trial classificat of electro-
encephalography (EEG) focus on two types of paradigms: epHasked
methods, in which the amplitude of the signal is used as thteife for classifica-
tion, e.g. event related potentials; and second order rdsttio which the feature
of interest is the power of the signal, e.g. event relategsfaehronization. The
procedure for deciding which paradigm to useagshocand is typically driven
by knowledge of the underlying neurophysiology. Here weppse a principled
method, based on a bilinear model, in which the algorithmuisneously learns
the best first and second order spatial and temporal fedftoresassification of
EEG. The method is demonstrated on simulated data as wel &E& taken

from a benchmark data used to test classification algoritlombrain computer
interfaces.

1 Introduction

1.1 Utility of discriminant analysisin EEG

Brain computer interface (BCI) algorithms [1][2][3][4] raito decode brain activity, on a single-
trial basis, in order to provide a direct control pathwaywesn a user’s intentions and a computer.
Such an interface could provide “locked in patients” a madreal and natural control over a neu-
roprosthesis or other computer applications [2]. Furtbgiproviding an additional communication



channel for healthy individuals, BCI systems can be useddrease productivity and efficiency in
high-throughput tasks [5, 6].

Single-trial discriminant analysis has also been used asearch tool to study the neural correlates
of behavior. By extracting activity that differs maximabgtween two experimental conditions, the
typically low signal-noise ratio of EEG can be overcome. Tésulting discriminant components
can be used to identify the spatial origin and time coursetiofudus/response specific activity,
while the improved SNR can be leveraged to correlate vditialoif neural activity across trials to
behavioral variability and behavioral performance [7, 5] essence, discriminant analysis adds to
the existing set of multi-variate statistical tools comnyamsed in neuroscience research (ANOVA,
HotelingT?, Wilks’ A test).

1.2 Linear and quadratic approaches

In EEG the signal-to-noise ratio of individual channelsow,| often at -20dB or less. To overcome
this limitation, all analysis methods perform some form eéraging, either across repeated trials,
across time, or across electrodes. Traditional EEG arsa#ygrages signals across many repeated
trials for individual electrodes. A conventional methodidsverage the measured potentials follow-
ing stimulus presentation, thereby canceling uncorrdlatse that is not reproducible from one
trial to the next. This averaged activity, called an evelatesl potential (ERP), captures activity that
is time-locked to the stimulus presentation but cancel&ed@scillatory activity that is not locked

in phase to the timing of the stimulus. Alternatively, matydses compute the oscillatory activity

in specific frequency bands by filtering and squaring theadigrior to averaging. Thus, changes in
oscillatory activity are termed event related synchratidzeor desynchronization (ERS/ERD).

Surprisingly, discriminant analysis methods developed flar by the machine learning community
have followed this dichotomy: First order methods in whible amplitude of the EEG signal is
considered to be the feature of interest in classificationrresponding to ERP — and second or-
der methods in which the power of the feature is considerdzktof importance for classification
— corresponding to ERS/ERD. First order methods includepteai filtering + thresholding [2],
hierarchical linear classifiers [5] and bilinear discrianim analysis [8, 9]. Second order methods
include the logistic regression with a quadratic term [11d ¢he well known common spatial pat-
terns method (CSP) [10] and its variants: common spatictsggatterns (CSSP)[12], and common
sparse spectral spatial patterns (CSSSP)[13] .

Choosing what kind of features to use traditionally has kseead hocprocess motivated by knowl-
edge of the underlying neurophysiology and task. From a madearning point of view, it seems
limiting to commita priori to only one type of feature. Instead it would be desirabléHeranalysis
method to extract the relevant neurophysiological agtidé novowith minimal prior expectations.
In this paper we present a new framework that combines betlir$t order features and the sec-
ond order features in the analysis of EEG. We use a bilineandtation which can simultaneously
extract spatial linear components as well as temporalr@iffefeatures.

2 Second order bilinear discriminant analysis

2.1 Problem setting

Given a set of sample poin® = {X,,, y,,}Y_,, X € RP*T y € {—1,1}, whereX,, corresponds
to the EEG signal oD channels and” sample points ang,, indicate the class that corresponds
to one of two conditions (e.g. right or left hand imaginaryvement, stimulus versus control
conditions, etc.), the task is then to predict the clasd lalfer an unobserved triak.

2.2 Second order bilinear model
Define a function,
f(X;0) = C Trace(UTXV) + (1 — O) Trace(AA™ (XB)(XB)TA) 1)

whered = {U e RP*E V e RT ¥R A € RP*K B ¢ R *T"} are the parameters of the model,
A € diag({—1,1}) a given diagonal matrix with elemenfs-1, 1} andC € [0, 1]. We consider the



following discriminative modelwe model the log-odds ratio of the posterior class proligtid be
the sum of a bilinear function with respect to the EEG sigmapitude and linear with respect to
the second order statistics of the EEG signal:
Py =+1|X)
log ——= = f(X]0 2
2.2.1 Interpretation of the model

The first term of the equation (1) can be interpreted as acpatiporal projection of the signal,
under the bilinear model, and captures the first order statisf the signal. Specifically, the columns
u,. of U representr linear projections in space (rows &). Similarly, each of the? columns of
vy in matrix V represent linear projections in time (columnsXf. By re-writing the term as:

Trace(UTXV) = Trace(VU'X) = Trace(WT X) (3)

where we defined = UVT, itis easy to see that the bilinear projection is a linear loimiation

of elements ofX with the rank — R constrained ofW. This expression is linear iX and thus
captures directly the amplitude of the signal directly. &mtjzular, the polarity of the signal (positive
evoked response versus negative evoked response) wititmaet significantly to discrimination if

it is consistent across trials. This term, therefore, a@stphase locked event related potentials in
the EEG signal.

The second term of equation (1), is a projection of the povi¢ghefiltered signal, which captures
the second order statistics of the signal. As before, eathmroof matrix A and B, represent
components that project the data in space and time resplcti®epending on the structure one
enforces in matrixB different interpretations of the model can be archived. hi@ general case
where no structure oB is assumed, the model captures a linear combination of dreegits of a
rank — T’ second order matrix approximation of the sighia= XB(XB)T. In the case where
Toeplitz structure is enforced dB, thenB defines a temporal filter on the signal and the model
captures the linear combination of the power of the secoddranatrix of the filtered signal. For
example ifB is fixed to a Toeplitz matrix with coefficients correspondinga 8Hz-12Hz band pass
filter, then the second term is able to extract differencethénalpha-band which is known to be
modulated during motor related tasks. Further, by leari3nfyjom the data, we may be able to
identify new frequency bands that have so far not been ifietiin novel experimental paradigms.
The spatial weightsA together with thelrace operation ensure that the power is measured, not
in individual electrodes, but in some component space tlet reflect activity distributed across
several electrodes.

Finally, the scaling factoA (which may seem superfluous given the available degreegeddm)
is necessary once regularization terms are added to tHé&didpood function.

2.3 Logisticregression

We use a logistic Rregression (LR) formalism as it is patéidy convenient when imposing ad-
ditional statistical properties on the matrices V, A, B such as smoothness or sparseness. In
addition, in our experience, LR performs well in stronglyedapping high-dimensional datasets
and is insensitive to outliers, the later being of particatancern when including quadratic features.

Under the logistic regression model (2) the class posterabability P(y|X; #) is modeled as

1
PyX;0) = 7 e X ) 4)
and the resulting log likelihood is given by
N
L(0) = =) log(1 + e v/ Xnil)two) (5)

n=1
We minimize the negative log likelihood and add a log-prioreach of the columns df, V andA
and parameters @ that act as a regularization term, which is written as:

R

K T
argmin | —L(6) — > _(logp(u,) +logp(v,)) — > _logp(ar) — Y _ log(p(by)) (6)
k=1 t=1

U,V,A,B,w, r=1



where the log-priors are given for each of the parameterslogp(ux) = uEK(“)uk
, logp(vy) = u;fK(“)uk, logp(ag) = aEK(“)a;C and logp(bg) = bEK(b)bk.
K® ¢ RPxD K0 ¢ RT*T K@) ¢ RPxD K®) ¢ RT*T gre kernel matrices that con-
trol the smoothness of the parameter space. Details ongléarezation procedure can be found in

[8].

Analytic gradients of the log likelihood (5) with respect tioe various parameters are given
by:

OL(6) N

aur = nz::l ynﬂ'(xn)xan (7)

OL(0) N

v, © e, @

OL(0 N

8;) o ; Yo7 (X ) Ar,r (X B) (X, B) ", 9)
N

8515?) = 2 Z Yot (X, ) XTAAATXD, .

n=1
where we define
e~ U(F(Xn;0)+w,)
T 14 e vTXnif)two)
whereu;, v;, a;, andb; correspond to thé; columns ofU, V, A, B respectively.

ﬂ—()(n) =1- P(y‘X

11)

2.4 Fourier Basisfor B

If matrix B is constrained to have a circular toepliz structure therait be represented & =
F~'DF, whereF —! denotes the inverse Fourier matrix, ddds a diagonal complex-valued matrix
of Fourier coefficients. In such a case, we can re-write égpus{9) and (10) as

oLe) . I
da, Q;ynﬂ(XH)AT,T(XnF DFTXT)a, (12)
OL(0) N
= -T T T -1 .
3. Q;ym(xn)(F XTAAATX, FY), d; (13)
(14)

whereD = DDY, and the parameters are now optimized with respect to Fouwigfficientsd;, =
D, ;. An iterative minimization procedure can be used to soleediove minimization.

3 Results

3.1 Simulated data

In order to validate our method and its ability to capturehdotear and second order features, we
generated simulated data that contained both types ofrésatnamely ERP type of features and
ERS/ERD type of features. The simulated signals were getergith a signal to noise ratio of
—20dB which is a typical noise level for EEG. A total of 28 chann&B0 ms long signals and at a
sampling frequency of 100Hz where generated, resultingiagix of X of 28 by 50 elements, for
each trial. Data corresponding to a total of 1000 trials vgeneerated; 500 trials contained only zero
mean Gaussian noise (representing baseline conditioitk)thve other 500 trials having the signal
of interest added to the noise (representing the stimuladiton): For channels 1-9 the signal was
composed of a 10Hz sinusoid with random phase in each of tieeahiannels, and across trials. The
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Figure 1: Spatial and temporal component extracted on sitedidata for the linear term (top) and
guadratic term (bottom).

sinusoids were scaled to match the0d B SNR. This simulates an ERS type feature. For channels
10-18, a peak represented by a half cycle sinusoid was addggpeoximately 400 ms, which T
simulates an ERP type feature.

The extracted components are shown in Figure 1. The lineapooentU (in this case only a col-
umn vector) has non-zero coefficients for channels 10 to 18 simowing that the method correctly
identified the ERP activity. Furthermore, the associat@dpteal componenV has a temporal
profile that matches the time course of the simulated evoésglonse. Similarly, the second order
componentsA have non-zero weights for only channels 1-9 showing thatrtbhod also identified
the spatial distribution of the non-phase locked activithe temporal filteB was trained in the
frequency domain and the resulting filter is shown here irtithe domain. It exhibits a dominant
10Hz component, which is indeed the frequency of the nors@lacked activity.

3.2 BCI competition dataset

To evaluate the performance of the proposed method on réalgaapplied the algorithm to an
EEG data set that was made available through The BCI Corngre2003 ([14], Data Set V).
EEG was recorded on 28 channels for a single subject perigrself-paced key typing, that is,
pressing the corresponding keys with the index and littlgein in a self-chosen order and timing
(i.e. self-paced). Key-presses occurred at an averagel sgek key per second. Trial matrices
were extracted by epoching the data starting 630ms befatfe ley-press. A total of 416 epochs
were recorded, each of length 500ms. For the competitiefitst 316 epochs were to be used for
classifier training, while the remaining 100 epochs werectosed as a test set. Data were recorded
at 1000 Hz with a pass-band between 0.05 and 200 Hz, then dowed to 100Hz sampling rate.

For this experiment, the matriB was fixed to a Toeplitz structure that encodes a 10Hz-
33Hz bandpass filter and only the paramet&rsV, A and w, were trained. The number of
columns of U and V were set to 1, where two columns were used Aar The temporal filter
was selected based on prior knowledge of the relevant freyuband. This demonstrates the
flexibility of our approach to either incorporate prior knedge when available or extract it from
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Figure 2: Spatial and temporal component (top), and twaapaimponents for second order fea-
tures (bottom) learned on the benchmark dataset

data otherwise. Regularization parameters where chosea five fold cross validation procedure
(details can be found in [8]). The resulting componentsliiig tlataset are shown in Figure 2.

Benchmark performance was measured on the test set whiahohéde&en used during either train-
ing or cross validation. The number of misclassified trizgtie test set was 13 which places
our method on a new first place given the results of the competivhich can be found on-
line http://ida.first.fraunhofer.de/projects/bci/coetiion_ii/results/index.html ([14]). Hence, our
method works as a classifier producing a state-of-the auttres a realistic data set. The receiver-
operator characteristic (ROC) curve for cross validatioe for the independent testset are shown in
Figure 3. Figure 3.2 also shows the contribution of the lirseal quadratic terms for every trial for
the two types of key-presses. The figure shows that the twostprovide independent information
and that in this case the optimal relative weighting facar' i~ 0.5.

4 Conclusion

In this paper we have presented a framework for uncoveriafiams well as temporal features in
EEG that combine the two predominant paradigms used in EEysia: event related potentials
and oscillatory power. These represent phase locked divinere polarity of the activity matters),
and non-phase locked activity (where only the power of thaaliis relevant). We used the proba-
bilistic formalism of logistic regression that readily ovporates prior probabilities to regularize the
increased number of parameters. We have evaluated thesepeethod on both simulated data,
and a real BCI benchmark dataset, achieving state-of+theeesification performance.

The proposed method provides a basis for various futuretibres. For example, different sets of
basis functions (other than a Fourier basis) can be enfaynetie temporal decomposition of the
data through the matriB (e.g. wavelet basis). Further, the method can be easilyrgired to



-

AUC : 0.96

True positive rate
o o o o o o o o
N w N o > N » ©

o
o

o
o

0.2 0.4 0.6
False positive rate

True positive rate
o o © © © o o o ©°
= N w S o o ~ © © =

o
o

AUC : 0.935 #errors:13

0.2 0.4 0.6 0.8 1
False positive rate

Figure 3: ROC curve with area under the curve 0.96 for thesoraldation on the benchmark dataset
(left). ROC curve with area under the curve 0.93, on the irdédpnt test set, for the benchmark
dataset. There were atotal of 13 errors on unseen data, ¥8hé&ds than any of the results previously
reported, placing this method in first place in the benchmanking.

second order term

Training Set

first order term

10

second order term

Testing set

first order term

Figure 4: Scatter plot of the first order term vs second orelen of the model, on the training and
testing set for the benchmark dataset’(left key, and "o’ right key). It is clear that the two types
of features contain independent information that can hafprove the classification performance.



multi-class problems by using a multinomial distributiamip Finally, different regularizations (i.e
Ly norm, L, norm) can be applied to the different types of parametersefriodel.
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