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1. Introduction

Establishment of robust direct brain-machine communication channels has enhanced function

and performance of both impaired and normal nervous systems. The creation of direct links

between brain and machine has been most strongly motivated by the need to provide a mode

of communication for those silenced by conditions such as amyotrophic lateral sclerosis. Such

brain-computer interfaces (BCI) [1] translate cortical activity involved with motor planning and

motor response to select letters and words on a computer display or control robotic prosthesis.

Perhaps the most striking results have been demonstrated through invasive systems based on

multiunit microelectrode implants. Microelectrode arrays implanted in motor cortex have en-
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abled monkeys to reach and grasp in three dimensions using a robotic arm and gripper without

using their hands [2]. In fact, invasive systems have already allowed humans with ALS or high

level spinal injury to communicate [3].

Invasive brain machine interfaces need not be limited to monitoring cortical activity. Rep-

resenting an astonishing paradigm shift, neuroscientists in Brooklyn have assumed the role of

animal trainer, wirelessly guiding rats using cortical microstimulation [4]. Rats were implanted

with microelectrodes in left and right somatosensory (barrel) cortex and medial forebrain bun-

dle (MFB). Rats following navigational cues provided by stimulating somatosensory cortex

were subsequently rewarded through stimulation of MFB. Both navigational and reward stim-

uli are controlled by the rat trainers, however one can envisage a system in which motor cortex

is monitored so reward centers are automatically stimulated if navigational cues are correctly

executed. Direct micro-stimulation of cortical reward centers to improve motivation and task

performance immediately raises ethical concerns. A more acceptable solution perhaps rests in

developing a system that delivers reward through traditional sensory systems while monitor-

ing reward centers to determine a set of optimal sensory stimuli that maximize reward impact.

The advertising industry would certainly benefit from such a system. Clinically motivated cor-

tical stimulation systems have successfully treated those suffering with Parkinson’s [5] and

Epilepsy [6] by stimulating the subthalamic nucleus and vagus nerve respectively. Cochlear

implants have restored hearing by stimulating the auditory nerve [7] and visual cortical im-

plants promise to restore vision [8].

Invasive brain machine interfaces are clearly well motivated, improving quality of life by

restoring communication, motor control, hearing and possibly vision to a sizable segment of

the population. Brain machine communication channels also enable cognitive user interfaces

(CUI) designed to enhance healthy nervous system function, augmenting user performance

during cognitively demanding tasks by boosting information processing capacity and reducing

stress-induced deficiencies of executive control functions1. Widespread adoption of invasive

cognitive interfaces is highly unlikely; as such, any cognitive user interface (CUI) must rely

1Visit DARPA’s vision for Cognitive User Interfaces: http://www.darpa.mil/ipto/programs/augcog/
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on non-invasive neuroimaging modalities. Functional magnetic resonance imaging has revo-

lutionized neuroscience by delineating the anatomical origin of scores of cognitive processes.

While fMRI studies are critical to the design of any CUI, the size, cost, and more importantly

temporal resolution of scanners prohibits their use in any practical application. Millisecond

temporal resolution and low-cost make electroencephalography (EEG) the most viable modal-

ity for cognitive interface design.

Robust classification algorithms are critical in order to realize practical benefits of EEG.

Sensitivity to environmental noise is of obvious concern, however recent advances in sensor

technology2 suggest classifier development should focus on identifying neural sources. Tra-

ditionally, electrophysiological research relies on averaging across hundreds of stimulus or

response locked trials to uncover the dynamics of neural activity from EEG. The underlying as-

sumption has been that by averaging across trials, the contribution of background EEG activity

is minimized relative to neural activity correlated with a stimulus. Such event related potential

(ERP) analysis, however, masks variability between trials that may be of critical importance

when striving to understand underlying cortical interactions. For example, one study describes

an alpha phase distribution across trials that comprise averaged visual stimulus-evoked event

related potentials [9]. The authors of this study suggest that visual stimuli in fact reset the

phase of dynamic neural activity resulting in variability of alpha phase across stimulus locked

trials. Any practical EEG based interface must account for inter-trial variability.

Immediate applications for cognitive user interfaces can be derived by teasing apart process-

ing stages between sensory stimuli and motor response as outlined in Figure 1. Contemporary

models indicate that sensory information is decomposed into discrete fundamental features

that are subsequently integrated under constraints imposed by adjacent features and higher

order areas associated with memory and reward. The process of sensorimotor integration is

still subject to debate; however one hypothesis proposes that perceptual evidence accumulates

lending weight to competing neuronal populations poised to execute motor plans for distinct

postures. Motor responses are subsequently monitored and the outcome influences reward

2For example, non-contact bioelectrodes: http://www.darpa.mil/dso/thrust/biosci/meta eng/quasar.html
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Figure 1: Stimulus response processing stages for cognitive user interface design

centers which feedback to influence subsequent decisions. Monitoring neural populations as-

sociated with perception, sensorimotor integration, and reward immediately suggests cognitive

user interfaces for high-throughput object recognition and error correction. After reviewing

linear classification methods, we present two examples of cognitive user interfaces designed

expressly to augment cognition by enhancing throughput during an object recognition task and

correcting response errors during stressful motor intensive tasks.

2. Machine Learning: Linear Methods

The merits of linear and non-linear methods were the subject of a debate held during the Second

International Meeting on BCIs [10]. This discussion reviewed important factors to consider

when fitting a learning algorithm to the problem of classifying EEG such as the degree of prior

information, nature of data distributions, amount of training data, and computational costs [11]

for online real-time cognitive interfaces. At the present time we prefer linear methods for EEG

classification since a principled approach defining the origin of nonlinearities in EEG has yet to

be clearly defined. Compared with non-linear methods, linear methods are consistent with the

linearity of volume conduction, are less likely to over-fit noise, and have a significantly lower

computational cost.

Linear methods for analyzing multi-channel EEG can be categorized as supervised or unsu-

pervised. Traditionally implemented as an unsupervised method, ICA [13] decomposes signals

into several independent components with time series that are viewed and analyzed separately.
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Unsupervised methods do not leverage truth labels associated with experimental events such as

stimulus type. Supervised methods, on the other hand, exploit training labels given knowledge

of the task and/or subject responses. CSP [14] is an example of supervised source recovery

widely used in EEG. This method weights electrodes according to the power captured for two

classes of data. It finds orientations in the sensor space in which the power is simultaneously

maximized for one class and minimized for the other. An alternative to maximizing power is

to maximize the discrimination between two classes. Parra et al. [24] proposed a linear dis-

crimination method that spatially integrates sensor values in well-defined temporal windows to

recover sources that maximally discriminate two classes given labeled EEG.

All three methods linearly transform the original signals as, Y = WX where X are the obser-

vations (the original EEG signal matrix), W is the transform matrix (or vector) that is calculated

using the different linear approaches, and Y is the resulting source matrix (or vector) represent-

ing the recovered sources. Note the recovery of sources Y given an underlying linear mixture

of observations in X.

2.1 Independent Component Analysis

Independent Component Analysis (ICA) is a method of finding a linear transformation of input

vectors X that maximizes the statistical independence of output source vectors Y such that

Y = WX. Principal component analysis (PCA) finds a transformation that decorrelates input

vectors by finding a linear transformation resulting in orthogonal output vectors such that the

inner product of the vectors is zero. Traditionally, the PCA transformation matrix consists of

the normalized eigenvectors of the input vectors’ covariance matrix. In contrast, ICA finds a

transformation such that the mutual information between output vectors tends to zero. ICA

transformations account for higher order statistical properties of sources as opposed to PCA

which is based on second order statistics.

EEG is well suited for ICA analysis [13]. The application of ICA to any problem requires

compliance with several assumptions. Most importantly, the underlying sources responsible
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for generating a set of observations must be statistically independent. Applying ICA to EEG

generates a set of statistically independent hypothetical neural or artifactual sources from sen-

sor observations. ICA places no restrictions on the spatial structure of such sources, which

might be widely distributed or spatially isolated. For example a widely distributed source

could correspond to 60 Hz environmental noise affecting all sensors, while an ideal isolated

source might correspond to activity in the somatosensory homunculus associated with tactile

stimulation of the right index finger. ICA will not, however, generate sources corresponding

to different neural processes that share the same underlying statistics. This limitation can most

likely be overcome only by incorporating prior information concerning the functional signifi-

cance of neural anatomy.

It is assumed that all mixing is linear and instantaneous. While mixing is most likely not

linear given the dynamics of electromagnetic field propagation in nervous tissue, cerebrospinal

fluid, skull and scalp, this assumption is nevertheless more realistic than attempting to account

for nonlinearities introduced by neural anatomy. A rather popular assumption is that volume

conduction in brain tissue is instantaneous therefor we do not need to be concerned with the

introduction of propagation delays.

The information maximization algorithm [12] commonly used to apply ICA to EEG im-

poses two additional assumptions, namely that the probability density distributions of sources

closely resemble the gradient of a generalized logistic sigmoid and that the number of indepen-

dent sources is equal to the number of sensors. In [12], the gradient of a generalized logistic

regression function is shown to resemble the probability density function of a Gaussian with

high kurtosis. The statistics of EEG, as is the case of most natural signals, do in fact resem-

ble a highly kurtotic Gaussian distribution so this assumption is approximately satisfied. The

dimension of neural sources is unknown and so one of the key challenges in ICA analysis of

EEG lies in determination of the optimal number sensors and source channels.
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2.2 Common Spatial Patterns

The common spatial patterns (CSP) approach [14] finds an optimal set of spatial filters that

produce features ideal for binary classification. Essentially, optimal spatial filters are deter-

mined through joint diagonalization of two covariance matrices derived from each task related

class. The normalized covariance matrix of each single trial NxT matrix X, where N is the

number of channels and T is the number of samples, is determined as C = XX′/trace(XX′). The

average of covariance matrices from class 1 (C1) and class 2 (C2) trials are then summed to

produce a composite covariance matrix Cc = C1 + C2. The eigenvectors and eigenvalues of this

spatial covariance matrix yield a whitening transformation P = (λc)−1/2U′c where Cc = UcλcU′c.

Transforming the average covariance matrices corresponding to the 2 classes, S1 = PC1P′ and

S2 = PC2P′, assures that S1 and S2 share common eigenvectors such that S1 = Bλ1B′ and S2 =

Bλ2B′ where λ1 + λ2 = I. The first and last eigenvectors of B then represent optimal projec-

tions associated with class 1 and class 2 respectively. In other words projecting whitened EEG

data along the vectors defined by the first and last eigenvectors of B will yield feature vectors

ideal for discrimination between EEG data associated with the two classes. The projection

matrix is then defined as W = (B′P)′ and an EEG trial is transformed as Y = WX. The columns

of W−1 are the common spatial patterns and can be interpreted as time-invariant EEG source

distribution vectors.

2.3 Linear Discrimination

Linear discrimination is also a supervised method and can be used to compute the optimal

spatial integration of a large array of sensors for discrimination between two classes [24]. As

with ICA and CSP, linear discrimination finds a transformation Y = WX where X is a 2-D N

x (M x t) matrix representing M trials (M = I + J, I trials for class 1 and J trials for class 2) of

EEG data at t time points and N recording electrodes. W, determined with logistic regression, is

a spatial weighting coefficient vector defining a hyperplane maximally separating two classes.

Timing information is exploited by discriminating and averaging within a short time window
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relative to a known external event such as stimulus presentation or motor response.

3. Cognitive user interface for error correction

Error related negativity (ERN) in EEG has been linked to perceived response errors and con-

flicts in decision-making. Single-trial detection of the ERN has been proposed as a means of

correcting communication errors in a BCI system [23]. We have developed single-trial ERN

detection to predict task-related errors. The system can be used as an automated real-time

decision checker for time-sensitive control tasks. This open-loop error correction paradigm

represents the first application of real-time cognitive event detection and demonstrates the util-

ity of real-time EEG brain monitoring.

There has been a recent spike in studies of cortical regions associated with conflict moni-

toring during motor response. Functional MRI and EEG studies of interference tasks report

significant increases in anterior cingulate cortex (ACC) activity preceding [15] and follow-

ing [16] response selection that is believed to be associated with conflict monitoring [17] and

emotional evaluation of errors [18]. Referred to as error related negativity (ERN) or medial

frontal negativity (MFN) in EEG studies, such electrical activity is observed during flanker

[17], Stroop [19], rapid serial visual presentation (RSVP) [20, 15], and gambling [18] tasks.

During an Eriksen flanker task [21] subjects are instructed to indicate by button-press the class

of a central character flanked by distractor characters (e.g. “< < < < <” or “< < > < <”).

Errors in motor response are readily generated during this task, and are accompanied by ERN

[22] associated with ACC.

Using a simple linear classifier, we have reported up to 79% correct detection of the ERN

within 100 ms of the erroneous response [24]. More interestingly, we have described a set

of adaptive, linear algorithms for artifact removal and ERN detection optimized for high-

throughput real-time single-trial correction of human errors during an Eriksen flanker task [25].

The results obtained for a typical subject with 90% correct detection are shown in Figure 2.

The previously described fronto-central error related negativity is observed within 100ms fol-
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Figure 2: ERN detection using linear discrimination combining the time intervals 0-100ms

and 100-200ms after response. (left) Discriminating component and (center) scalp projection

graphs results were obtained with off-line linear classification. Similar results are obtained with

on-line adaptation.(right) Single-trial ROC results compare Az for off-line (LOO), on-line and

using only Fcz electrode. Note that on-line and off-line are comparable.

lowing the response. In addition, a more prolonged bilateral posterior positivity is observed

for correct trials, which further improves discrimination. This system is capable of significant

improvement in human-machine performance as summarized in Table 1.

4. Cognitive user interface for image search

The appearance of a target image during a rapid serial visual presentation (RSVP) task elicits

an EEG response associated with target recognition. We have demonstrated that the detection

of these EEG signals on a single trial basis can be used to replace the slow manual response

of a human operator, thereby significantly increasing the throughput of image search tasks.

This paradigm has the potential to improve the performance of Image Analysts and radiolo-

gists who need to routinely survey large volumes of aerial imagery or medical images (e.g.

mammograms) within short periods of time. In addition, the approach looks to measure the

“bottleneck” between constant delay perceptual processing and more variable delay cognitive

processing. Thus the detected signatures can be used to “gauge” if cognitive systems are capa-
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Table 1: Summary of on-line error correction for each of 7 subjects

Subject original error % error

ID rate in % reductiona

1 6 23

2 10 -6

3 15 -1

4 15 49

5 13 27

6 14 47

7 18 12
aNegative values indicate degradation in performance.

ble/incapable of assimilating perceptual input for fast decision making.

4.1 Rapid object recognition

Current models of visual object recognition propose information flows through a series of feed-

forward processing stages in which low level features are extracted from a visual scene, then

integrated under constraints imposed by adjacent and top-down connections [26]. The true

nature of cortical circuits responsible for perception and recognition remains a mystery. In

fact there is much debate as to whether recognition relies on information flow through cortico-

cortical feedback loops or rather one feed-forward sweep through the visual system [27].

While direct functional imaging of cortical circuits is not yet feasible, indirect evidence from

single unit recordings, event related potential and psychophysical studies describe macroscopic

cortical regions comprising the visual system in terms of both anatomical spatial constraints

and functional temporal constraints. The challenge in any such study is designing experiments

that tease apart cortical processing stages involved with object recognition and delineate the

spatial extent and temporal order, latency, duration, and influence of each stage in response to

specific classes [28] of visual stimuli.
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One experimental task that simulates natural saccadic scene acquisition is Rapid Serial Vi-

sual Presentation (RSVP) [29]. During an RSVP task a continuous sequence of images is

presented in a static location. Electrophysiological studies of macaque monkey cortical cell re-

sponse to RSVP stimuli indicate processing required for object recognition is completed within

150 milliseconds of stimulus onset [29]. Face selective neurons in superior temporal sulcus

(STSa) were monitored while an image sequence of 7 differently oriented faces was presented

(14-222 ms/image). Neurons consistently responded selectively to target face images of a spe-

cific orientation approximately 108 ms following target onset, regardless of presentation rate.

Response duration was proportional to stimulus duration.

This study does not necessarily reflect visual processing time required for all classes of nat-

ural images. Face selective neuronal activity reflects responses of highly specialized cortical

pathways that may not participate in processing particular subsets of natural scenes. Neuronal

response times may also be related to early stages of the visual processing pathway dedicated

to low-level feature extraction. In addition, since cortical response latencies are shorter in

macaque than humans [30], these findings do not directly translate to visual object recognition

processing time of humans. A seminal EEG-based RSVP study [31] established a significant

difference between trial averaged frontal electrode event related potentials (ERPs) approxi-

mately 150 ms following presentation of target vs. distractor images. Lateral motor response

related activity was observed approximately 375 ms after stimulus onset. Target images con-

tained an animal in a random location within a natural scene while distractor images were

natural scenes. More recently, a similar experiment reported EEG activity correlated with im-

age categorization begins within 80 ms of image presentation [32]. These results demonstrate

that EEG signatures of rapid object recognition/categorization can be seen, with a very short

latency following stimulus presentation, by averaging across multiple trials.

While the early onset of differential ERP activity noted in these studies suggests recogni-

tion is achieved following a single feed-forward sweep through the visual system [33], another

study reports this activity is due to low-level feature recognition rather than object categoriza-

tion [27]. A cued-target paradigm was designed to test for differences in ERPs resulting from
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target and non-target visual stimuli with contextual rather than featural differences. Target

categories (e.g. animal, furniture, dog) were presented about half a second before each im-

age. Target and non-target image sets were identical ensuring no differences in low-level fea-

tures. Event related potentials for the cued-target task are markedly different than the original

single-category go/no-go task. A presentation locked ERP difference similar to that previously

reported is only present when there are low-level featural differences between targets and non-

targets. There is a later differential component about 150-300 ms following image presentation

arising from contextual differences, the latency of which is correlated with reaction time. If

this component is in fact associated with object recognition, its latency does permit inclusion,

albeit brief, flow of information through cortico-cortical feedback loops. Of course this task

requires interaction between visual stimulus response and verbal memory, which may add an

additional processing stage. One hypothesis of interest is that the variable latency results from

integration of ambiguous signals to reach a decision in posterior parietal cortex [34].

We have recently reported single-trial detection of spatial signatures in EEG related to vi-

sual target recognition within 200 milliseconds of image onset during an RSVP task [35]. This

RSVP task differed from Thorpe’s original experiment in that subjects were asked to detect

target images within sequences (barrages) of 100 images [36] that had a 50% chance of con-

taining a single target image. Target images consisted of a person/people comprising no more

than 25% of a natural scene while distractor images were natural scenes. Subjects were in-

structed to press a button at the beginning of a sequence and release it if a target appeared.

EEG from target and distractor trials was compared on a single-trial basis using linear discrim-

inant analysis [24, 37] and a forward linear model was used to determine sensor projections

of the discriminating source activity [24]. As shown in figure 3, this forward model indicated

that discriminating activity began approximately 200 ms following image presentation moving

anteriorly over sensory motor areas 300-400 ms following image presentation. Since these

signatures are learned/detected single-trial, it is possible to analyze variability between trials

as well as determine classification performance on new trials.

This experiment required that subjects make a motor response immediately after detecting
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Figure 3: Area under ROC curve (Az) for leave-one-out test of optimal linear discriminating

source as a function of the center of a 100 ms discrimination window, together with scalp plots

showing sensor projections of discriminating sources, for both subjects at each image presen-

tation rate. By sliding the window used to train a linear discriminator, we are able to study the

temporal sequence of neuronal responses evoked by visual stimuli. Due to the high temporal

resolution afforded by EEG this method provides an intuitive description of communication

between visual and sensorimotor cortex. Results show multiple loci for discriminating activity

(e.g. motor and visual). (left) subject 1 for images presented at 200, 100 and 50 ms per image.

(right) subject 2.
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the target. In order to decouple motor response from EEG activity related to target recognition,

we revised our experimental protocol and instructed subjects to indicate target appearance by

pressing a button after all images in the sequence were presented. Using the same linear dis-

crimination method and forward model, optimal linear spatial EEG signatures were computed

at multiple time windows of 50 ms duration reflecting cortical activity related to target recog-

nition in the absence of motor activity. Figure 4 shows an example of applying optimal spatial

linear discriminators learned at the peaks of a temporal classification performance curve. In

Figure 4b we see the result of applying a discriminator learned at a 190ms time window to all

60 EEG channels 1 second before and after the stimulus presentation. As would be expected

we see a peak in the trial averaged value near 190ms, indicating the detection of the target. In

addition we see a strong negative peak near 330ms. A strong negative peak represents high

negative correlation between the discriminator and sensors and indicates identical spatial ac-

tivity, but opposite sign. Since the mean value for distractor trials is approximately zero, a high

negative correlation would correspond to a peak on the plots of Figure 4a i.e. the fluctuation

periods we see in Figures 4b-d should be roughly twice that seen in Figure 4a. Figure 4d shows

the results when using a discriminator learned at 490ms. As expected a positive peak occurs

near 490ms and, in addition, a small negative peak is present near 330ms. However there is

no positive peak at 190ms, which might be expected if the signature were simple fluctuations

of the same spatially localized areas. Likewise there is no strong positive peak in Figure 4b at

490ms. Thus these signatures appear to be significantly different, though they share some neg-

ative correlation with the activity near 330ms. Figure 4c is a discriminator learned at 330ms.

It has a small negative peak at 220ms, though no significant peak at 490ms. Figure 4 also

shows the scalp projections of the learned signatures. Here we see a sign reversal between the

signatures at 190 and 330ms.

These studies indicate significant differential activity associated with object categorization

arising as early as 190ms after image presentation within a barrage of images. Single-trial anal-

ysis of spatial activity in high density EEG leads to fluctuations in discriminating performance

with a period that is independent of stimulus presentation rate. Further analysis decoupling
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Figure 4: Optimal discriminating activity related to object recognition in the absence of motor

activity (a) ROC performance results (Az). Shown are leave-one-out discrimination results

for the optimal linear discriminator learned within a 50 ms window and applied within the

same window. Results are computed 1 sec before and after stimulus locked presentation. Note

that this RSVP tasks includes a barrage of images and therefore multiple images are presented

during this 2 sec interval. The dashed horizontal line indicates maximum value before stimulus

locked image presentation and therefore all values less then this value are considered noise. (b-

d) Results of applying the optimal spatial linear discriminator learned at three different times

(b) 190 ms, (c) 330 ms and (d) 490 ms, to the EEG data. Shown are scalp projections for the

discriminator, single-trial results of applying the discriminator across the 2 sec interval and

the trial averaged response of the discriminator. Vertical dotted lines indicate time interval in

which each discriminator was trained. In the scalp plots, red indicates strong positive coupling

to the sensors and blue strong negative coupling. In the single-trial plots, red indicates large

positive values when the signals are projected onto the discriminator (i.e. high probability of

target) and blue large negative values (i.e. low probability of target).
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motor response seems to suggest that optimal discriminating components learned at different

times are often negatively correlated with activity at other times, indicating a strong spatially

overlapped fluctuation or oscillation of EEG activity, while other discriminating components

have signatures with little correlation with such activity. This appears to indicate that different

signatures are present at different times for discriminating target from distractor.

Such reports provide evidence that object recognition is achieved through a series of activa-

tions in distinct cortical regions and places temporal limits on processing time in the absence

of motor response. As of yet studies do not indicate the degree of interaction between these

processing stages, the spatial extent of each region, or the nature of the underlying cortical cir-

cuits. Our current exploration with simultaneous EEG/fMRI should provide additional clues,

however it is clear that more sophisticated experimental designs and imaging modalities are

necessary to clarify the nature of neural activity responsible for human object recognition.

4.2 Image Reprioritization Interface

These findings effect the design of an interface to increase search speeds of image analysts.

EEG signatures of object recognition detected via the linear discriminator can be used to repri-

oritize an image sequence, placing detected targets in the front of an image stack as shown in

Figure 5. Image sequences are reordered based on single-trial classification of EEG. Images

with classifier output exceeding a threshold are classified as targets and moved to the beginning

of the sequence.

The onset of the temporal window selected to train the linear classifier has a significant

impact on resequencing performance. Figure 6 shows reprioritization performance across 3

presentation rates resulting from 100 ms discrimination training windows centered 250 ms,

300 ms, and 400 ms following stimulus onset. For comparison, sequences were reordered

according to button releases. For this case, target images were classified as targets if they

preceded button releases by the mean latency between stimulus onset and button release. Mean

button release latencies were determined across trials for each frame duration. Also plotted is
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Figure 5: Image Reprioritization Interface - During sequence reprsioritization, images are

moved to the beginning of the image deck if classifier output associated with a robust EEG

signature is greater than an optimal threhold.
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Figure 6: Resequencing performance (measured by the fraction of target images presented as

a function of sequence index) using detected EEG signatures and button release. (top) subject

1 for images presented at 200, 100 and 50 msec per image. (bottom) subject 2.

the optimal resequence, which would place all targets before distractors. For subject 1, the best

performance was for using a discrimination window centered at 400 msec (200 msec before the

mean button press). Windows at earlier times, for example at 250msec, were often worse than

the button release results. The late response, together with the scalp plots of Figure 3, suggest

the most robust signature for subject 1 to be generated via motor planning activity. Subject 2

results were more consistent across the three time windows, with efficient reprioritization for

250, 300 and 400 msec. Together with Figure 3, this suggests that both a visual and motor

component provide robust signatures for detection of targets and reprioritization of the image

sequence. In most cases, the detected EEG signatures result in a reprioritization for more

efficient image search compared to the overt response.
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5 Conclusion

Cognitive user interfaces are redefining the limits of human prowess by enriching perception,

cognition, and action. From the perspective of neuroscience, inter-trial variability in EEG de-

rived from CUI design may explain the source of psychophysical observations such as response

time variability and provide clues describing interaction of processing stages between stimu-

lus and motor response within the context of ongoing EEG activity. Understanding factors

that contribute to differences between trials suggests robust classification schemes that enable

development of a myriad of next generation interfaces.

Immediate applications stem from our understanding of motor and visual systems. While

suffering from low bit rate, brain computer interfaces for communication and control provide

an outlet for those battling motor neuron diseases such as amyotrophic lateral sclerosis. In

fact, communication interfaces based on attentional modulation of a well studied event related

potential known as the P300 have demonstrated significant improvements in classification ac-

curacy resulting in higher throughput3. [38, 39] Modulation of P300 latency and amplitude

provides a means to assess perceptual load [40] and processing capacity for a subset of tasks

[41]. ERN based interfaces designed for error correction may help prevent disasters during

crisis situations that require quick decisions during motor intensive tasks in stressful environ-

ments such as military cockpits. The ability to monitor human object recognition leads to the

development of interfaces designed to improve search speeds of imagery analysts, or assess the

impact of visual stimuli [42]. In fact the timing of visual stimulus presentation with respect to

the phase of ongoing alpha observed in EEG can alter perception and affect stimulus salience

[43, 44, 45].

Realization of clinically motivated EEG based interfaces will very soon become accessible.

EEG has proven effective in detection and characterization of neurological disorders such as

epilepsy, schizophrenia [46], depression, Parkinsons and Alzheimers diseases [47]. Discovery

3For a description of the P300 speller visit:

http://ida.first.fraunhofer.de/projects/bci/competition/albany desc/albany desc ii.html
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of changes in EEG up to several hours prior to epileptic seizure onset [48] has motivated devel-

opment of seizure prediction algorithms [49] that could permit the implementation of devices

capable of preventing seizures from occurring [50]. Detection of motor planning in pre-motor

cortex will permit development of thought enabled robotic prostheses and muscle stimulators

for amputees or patients with spinal cord injury [51]. EEG indices of illusory tones perceived

by patients suffering with tinnitus [52] have already resulted in novel treatments based on EEG

triggered sound therapy4. The interfaces illustrated here only hint at those undreamed.
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