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Abstract
Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density
electroencephalography require accurate models of current flow for precise targeting and
current source reconstruction. At a minimum, such modeling must capture the idiosyncratic
anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently,
the process to build such high-resolution individualized models from structural magnetic
resonance images requires labor-intensive manual segmentation, even when utilizing available
automated segmentation tools. Also, accurate placement of many high-density electrodes on
an individual scalp is a tedious procedure. The goal was to develop fully automated techniques
to reduce the manual effort in such a modeling process. Approach. A fully automated
segmentation technique based on Statical Parametric Mapping 8, including an improved tissue
probability map and an automated correction routine for segmentation errors, was developed,
along with an automated electrode placement tool for high-density arrays. The performance of
these automated routines was evaluated against results from manual segmentation on four
healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the
difference of current flow distributions in resulting HD-tDCS models and the optimized
current flow intensities on cortical targets. Main results. The segmentation tool can segment
out not just the brain but also provide accurate results for CSF, skull and other soft tissues with
a field of view extending to the neck. Compared to manual results, automated segmentation
deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted
electric fields in the brain deviate by 12% and 29% respectively, which is well within the
variability observed for various modeling choices. Finally, optimized current flow intensities
on cortical targets do not differ significantly. Significance. Fully automated individualized
modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

(Some figures may appear in colour only in the online journal)

1. Introduction

High-definition transcranial direct current stimulation
(HD-tDCS) requires accurate models of current flow for
precise targeting (Datta et al 2009, 2012, Mendonca et al

2011, Caparelli-Daquer et al 2012, Minhas et al 2012). The
same applies to current source reconstruction in high-density
electroencephalography (HD-EEG) (Vatta et al 2010, Gllmar
et al 2010, Akalin Acar and Makeig 2013). At the level of
accuracy yielded by modern modeling techniques, generic
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head models are no longer useful: cortical folding is highly
idiosyncratic and drastically affects the resulting current flow
(Datta et al 2009, 2012). Secondly, the exact distribution of
cerebrospinal fluid (CSF) in the space between brain and skull
can significantly affect current flow in EEG (Rice et al 2013).
Finally, while the highly resistive skull is the main attenuating
barrier for tDCS and EEG currents, and its thickness is quite
variable within and across subjects, the current flow modeling
can be greatly affected if the model does not accurately capture
the exact skull geometry (Datta et al 2010, Lanfer et al 2012).
Therefore, one can argue that models that do not include the
idiosyncratic anatomy of the brain, CSF and skull for each
individual subject cannot provide meaningful localization of
tDCS hot-spots or EEG current sources.

The first step to build anatomically accurate head models
is the segmentation of structural magnetic resonance images
(MR images, MRI). There are a variety of software tools
already available for automatic segmentation of the brain and
head. Unfortunately, these are either restricted to a limited
field of view (FOV) excluding the neck, or they fail to
provide sufficient accuracy for CSF, skull and soft tissues
(see section 3.4 for detailed discussion on existing tools).
Both the extended FOV, as well as accurate segmentation of
non-brain tissues, are crucially important for correct current
flow modeling. Therefore, additional manual segmentation is
needed subsequent to any of the currently available automated
segmentation procedures. At the desired resolution of 1 mm3

this can be a labor-intensive process typically requiring at least
one week of manual effort for a six-tissue segmentation (gray
matter, white matter, CSF, skull, scalp and air cavities) as we
report here. Additionally, manually placing tens to hundreds of
electrodes onto these models can be a tedious process, though
some techniques have already been proposed (Oostenveld et al
2011, see section 2.4).

The goal of this work is to fully automate the
generation of the required segmentation masks including
high-definition electrode placement. We combined an existing
fully-automated segmentation tool (Unified Segmentation
(Ashburner and Friston 2005), as implemented in the Statical
Parametric Mapping software, version 8 (SPM8)3) with a
unique tissue probability map (TPM) developed at the Center
for Advanced Brain Imaging at Georgia State University. To
this we added a routine that corrects obvious morphological
errors of the segmentation and developed an automated
electrode placement tool. Among the many available MRI
segmentation software systems, we chose New Segment and
the mentioned TPM because this combination is unique in that
it includes not only gray and white matter, but also CSF, skull,
soft tissues, and air cavities, with an FOV extended to the neck.
Moreover, it is fully automated and performs better than other
available tools (see discussion in section 3.4).

We compared the deviation between our fully-automated
and manual segmentations for four healthy individuals and
seven stroke patients. As a reference we also provide results

3 SPM8 also implements an extended version of Unified Segmentation that
can use information from multiple co-registered volumes, e.g. T1, T2, PD,
CT, etc., and incorporates skull and scalp. In the SPM8 Manual this routine is
called ‘New Segment’, and is employed in this work.

for the SPM8 segmentation routine. We also evaluated the
resulting current flow models in the context of HD-tDCS,
again comparing manual segmentation with the automated
technique. We evaluated the electric field throughout the head
using standard electrode montages, and the field intensity
achieved at cortical targets when employing a recently
developed optimized targeting technique (Dmochowski et al
2011). We make all tools freely available such that additional
merits or limitations of the segmentation and electrode
placement routines may be evaluated.

2. Methods

2.1. MRI acquisition and pre-processing

MRI scans of the head were performed on four healthy subjects
(one female and three males, average age 38 years, range
33–45 years). Head 1 was scanned on a 3T Siemens Trio
scanner (Erlangen, Germany). The T1-weighted images were
collected using a gradient echo (GRE) sequence with TE =
2.3 ms, TR = 1900 ms, 280 × 320 matrix scan with 208 sagittal
slices. Head 2 and head 3 were scanned on a 3T General
Electric Signa Excite HD scanner (Fairfield, CT). The T1-
weighted images were acquired using a GRE sequence with
TE = 2.2 ms, TR = 7.3 ms, 256 × 256 matrix scan with 212
axial slices for head 2, and with 252 axial slices for head 3.
Head 4 was also scanned on a 3T Siemens Trio scanner. The
T1-weighted images were obtained using a GRE sequence
with TE = 4.2 ms, TR = 2250 ms, 256 × 256 matrix scan
with 176 sagittal slices. All images had an isotropic resolution
of 1 mm3.

To test the proposed automated routine on pathological
heads, we also obtained MRI scans on seven stroke patients
at the McCausland Center for Brain Imaging at University of
South Carolina. The seven patients (four females, three males,
average age 60 years, range 48–75 years) all had lesions in the
left hemisphere. MRI scanning relied on a 3T Siemens Trio
system. Both T1- and T2-weighted images were collected for
improved segmentation of the lesions. T1 images utilized a
turbo field echo sequence (MP-RAGE) with TE = 5.7 ms,
TR = 9.5 ms, 256 × 256 matrix scan with 160 sagittal slices.
T2 images utilized a sampling perfection with application of
optimized contrasts by using different flip angle evolutions
(SPACE) protocol with TE = 352 ms, TR = 3200 ms,
256 × 256 matrix scan with 160 sagittal slices. All images
had an isotropic resolution of 1 mm3.

The raw MR images were saved in the digital imaging and
communications in medicine (DICOM) format and converted
to the neuroimaging informatics technology initiative (NIfTI)
format (.nii, .hdr and .img) using MRIcro (version 1.40, Center
for Advanced Brain Imaging (CABI), Georgia State University
and Georgia Institute of Technology, Atlanta, GA). The images
were then bias corrected in SPM8 (Wellcome Trust Centre for
Neuroimaging, London, UK).

The traditional workflow for individualized HD-tDCS
modeling is shown in figure 1. We will elaborate on each step
in the following subsections where we describe our automated
procedure.
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Figure 1. Traditional workflow for individualized HD-tDCS modeling. The manual steps we attempted to automate are indicated by red
asterisks. Data formats of our current workflow are indicated below the images. (FEM: finite element model).

(a) (b)

Figure 2. Scalp TPM employed by the New Segment routine.
(a) The default TPM in SPM8; (b) the improved TPM developed at
CABI.

2.2. Intensity-based automatic MRI segmentation

The pre-processed MR images (T1 only for healthy subjects,
T1 and T2 for stroke heads) were segmented by a probabilistic
segmentation routine (New Segment, an extension of Unified
Segmentation (Ashburner and Friston 2005), and a function
in SPM8). The New Segment routine estimates the posterior
probability of each image voxel belonging to a specific tissue
type based on the intensity of each voxel and a prior probability
distribution of different tissue types (i.e. the TPM). The default
TPM provided by SPM8 for New Segment has six tissue types:
gray matter (GM), white matter (WM), CSF, skull, scalp and
air (the air cavities4). However, its FOV only contains the
brain area (figure 2(a)). Here we used an improved TPM
developed at CABI5. It has an extended FOV including the
neck (figure 2(b)). Using New Segment with the improved
TPM, the head was also segmented into six tissues: GM, WM
(including the brain stem), CSF (including surface CSF, CSF
inside ventricles, and the eyeballs), skull, scalp (soft tissue) and

4 Strictly speaking, air is not a tissue. However, the air inside the cavities
has dramatically different conductivity from other tissues (see section 2.5),
and thus it is crucial to model the air explicitly to obtain realistic current flow
distributions.
5 Available at http://bme.ccny.cuny.edu/faculty/lparra/autosegment/.

air. Note that for stroke heads, the lesions are automatically
classified as CSF by the TPM due to their similar intensity
distribution. It takes approximately 20 min6 to segment an MR
image with a typical size of 256 mm × 256 mm × 160 mm
and 1 mm3 resolution.

2.3. Segmentation errors and the automated correction
routine

The output from New Segment is a probability distribution
indicating how likely each image voxel belongs to a specific
tissue type. For subsequent finite element modeling (FEM)
of the current flow inside the head, binary tissue masks are
needed. Therefore, these continuous-valued probabilities were
converted into discrete assignments by selecting for each voxel
the tissue with the highest probability. This resulted in six non-
overlapping masks, one for each tissue. The masks are of high
quality (figure 3), but have a number of minor errors that result
primarily from image noise and low contrast in some areas.
These errors can be categorized into the following four types:

(i) Discontinuities in the CSF: the surface CSF should be a
continuous layer of fluid surrounding the brain and spinal
cord. However, the CSF layer is thin in some areas, and
may be mislabeled due to limited MRI resolution (1 mm3),
leading to mask discontinuities (figure 3(a)).

(ii) ‘Disconnected’ voxels: disjoint voxels of one tissue type,
erroneously within another tissue typically resulting from
background noise (figure 3(b)).

(iii) Unassigned voxels: after segmentation with SPM8 some
voxels are assigned a zero probability of belonging to all
tissue types7.

(iv) Rough tissue masks: noise in the original MR images
can lead to rough surfaces, e.g. the scalp mask shown in
figure 3(c), which are less smooth than expected based on
normal anatomy.

6 All durations in this work were measured on a PC with an Intel R© Quad
Core Xeon R©W5580 CPU at 3.2 GHz.
7 Strictly speaking, this type of error is in fact a bug from New Segment, since
its output is a probability distribution for each voxel that should be summed
to 1.
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(a)

(b)

(c)

Figure 3. Examples showing errors in the binarized segmentations
from SPM8 and the improvements after automated corrections, as
indicated by red circles/squares. (a) Discontinuities in CSF;
(b) ‘disconnected’ voxels; (c) rough tissue surface.

CSF discontinuities are of particular importance for
current flow modeling as the high conductivity of CSF is
erroneously displaced in those locations, leading to significant
changes in predicted current flow inside the brain. The
remaining errors could cause convergence problems when
generating the FEM in the meshing software. Fortunately,
these errors can be readily identified during visual inspection
based on the original MRI and thus they are traditionally
corrected by hand. This manual correction of segmentation
errors can produce masks with very high anatomical accuracy.
However, the process is very labor intensive (typically
1–3 weeks for one head depending on the image quality)
and requires a familiarity with anatomical MRI. Therefore,
it would be beneficial to develop an automated correction
technique.

The proposed automated correction routine is based on
morphological and Boolean operations, and was implemented
in Matlab8 (R2010b, MathWorks, Natick, MA). The details of
the procedure are as follows (there are three free parameters
that will be listed subsequently).

8 Code available at http://bme.ccny.cuny.edu/faculty/lparra/autosegment/

(i) Smoothing of tissue masks: to avoid complications in
the FEM generation, the resulting tissue probabilities
from New Segment were smoothed before conversion into
binary masks using a Gaussian low-pass filter with s mm
standard deviation.

(ii) Discontinuities in the CSF: to fill potential CSF
discontinuities, we reclassified all GM voxels that are
adjacent to the skull, interpreting them instead as CSF
with the following operation: CSF ← dilate(skull, x mm)
∩ GM (← and ∩ are assignment and set intersection,
respectively). We opted to reassign GM (as opposed to the
skull), as intuition suggests that this will perturb current
flow less severely, because the skull is a thinner layer
compared to GM, lending itself less well to displacement
(Datta et al 2010). Moreover, WM and GM have similar
electrical conductivity (section 2.5). Therefore, ensuring
continuities in the skull is more important than the
integrity of the GM.

(iii) ‘Disconnected’ voxels: the connected component9 for
each mask was determined and all components with less
than N voxels were categorized as unassigned voxels.

(iv) Unassigned voxels: each of the resulting unassigned
voxels was assigned the tissue type which is nearest to its
location. This was implemented by processing all tissue
masks using a Gaussian low-pass filter with 1 mm standard
deviation. For a given unassigned voxel, the smoothed
tissue mask with the highest value at that voxel serves to
identify the category of that voxel.

The three free parameters involved in this automated
processing are.

(i) Smoothing length constant s: a higher value will make
the masks smoother, and thus guarantee the convergence
as well as reduce the size in the following FEM
modeling. Aggressive smoothing, however, compromises
anatomical details, and thus, segmentation accuracy.
Typical values for s are: GM–0.2, WM–0.1, CSF–0.1,
skull–0.4, scalp–1, air–1.

(ii) Size (x) of the structural element to fill in CSF
discontinuities: the trade-off in selecting x is between
filling all the discontinuities (higher value) and preserving
the integrity of GM (lower value). We set x = 3 in all
instances.

(iii) Size threshold (N) for identification of disconnected
voxels: the trade-off here is comparable to choosing the
smoothing length constant. Typical values for N are:
GM–30, WM–20, CSF–the size of the fourth largest
component (thus all components smaller than the eye
balls are categorized as unassigned voxels), skull–300,
scalp–the size of the second largest component (thus all
components smaller than the scalp itself are classified as
unassigned voxels), air–20.

This routine takes approximately 2–4 min to correct the
segmentation errors, representing a significant reduction of
manual labor. We will discuss its performance in section 2.6.

9 A cluster of voxels which are connected together by 26-connectivity
(Rosenfeld and Kak 1982).
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Figure 4. The anatomical landmarks provided by the user to initialize electrode placement.

2.4. Electrode placement

In order to simulate the current flow in the brain, gel-
based electrodes need to be virtually fitted onto the scalp.
Previously, this was done manually using ScanIP (version 4.2,
Simpleware Ltd, Exeter, UK) with the ScanCAD Module,
which typically requires hours to place only few electrodes
(4 × 1 configuration) (Datta et al 2009), motivating the
need for an automated electrode placement tool. Although
free electrode placement tools are available (e.g., FieldTrip
(Oostenveld et al 2011), which allows for alignment to
template coordinates), they cannot automatically fit the
electrodes exactly on the local scalp surface, barring manual
adjustment of the interactive interface. Moreover, no function
module is provided to model the fitted electrodes as small
cylindrical discs. Therefore, we developed an automated
algorithm for electrode placement which can place and model
multiple electrodes following a standard montage in several
minutes (some ideas adapted from Koessler et al (2008)).

The montage of electrodes follows the convention of the
standard 10–10 international system (Klem et al 1999). Pre-
defined coordinates of 74 electrodes from EasyCap10 were
used. Any other standard configuration available in a similar
format can also be used for electrode placement. An additional
row of electrodes was placed to potentially allow stimulation
of deeper or lower-lying cortical targets. As head 1 has a
large FOV that covers the entire neck, we also placed four
additional electrodes around the neck. To avoid complications
in automatically placing electrodes near or behind the ear-
lobes, we omitted positions TP9 and TP10 in all heads. Thus,
we placed 93 electrodes on the scalp mask for head 1 (72 in
the original 10–10 system + 17 in additional row + 4 on the
neck), and 89 electrodes for each of other heads.

Electrode placement was implemented in Matlab11, based
on the commonly used anatomical landmarks: nasion (Nz),
inion (Iz), pre-auricular right (PAR) and pre-auricular left
(PAL). For the neck electrodes, two additional points are
needed: one in the middle neck anterior, with the other located
in the center of the neck posterior. The two neck points should
have similar z-coordinates as the intervertebral disc between

10 Available from www.easycap.de/easycap/.
11 Code available at http://bme.ccny.cuny.edu/faculty/lparra/autosegment/.

Figure 5. The three vectors s, c, a, and the origin o of the coordinate
system of electrode placement. m is the midpoint of Nz and Iz, and
L is the distance between Nz and Iz. The sagittal plane normal to s
and passing through o intersects the scalp, generating the curve C
(the black tracing).

cervical vertebrae C5 and C6 (figure 4). These fiducial points
are provided by the user by visual inspection of the MRI
(i.e., using MRIcro 3D viewer).

The line connecting from PAL to PAR defines a unit vector
s. Similarly, the line from Iz to Nz gives a unit vector c. The
cross product of s and c generates a third unit vector a = s×c.
Assuming a spherical head, the origin o of the coordinate
system can be obtained by

o = m + La
2 tan α

, (1)

where m and L are the midpoint and distance between Nz
and Iz, respectively, and α is an angle computed from the pre-
defined spherical electrode coordinates, as shown in figure 5.
These three vectors, together with the origin, define an affine
transformation

(
T = [ s c a o

0 0 0 1

])
) which is used to transform
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the pre-defined 10–10 electrode coordinate system to the
right–anterior–superior (RAS) coordinate system of the MRI
volume12. The transformed electrode coordinates are then
projected from the origin o onto the scalp surface.

The projected locations for the electrodes on the scalp
cannot be equidistant from one another unless the head is
a sphere. To make them as equidistant as possible for any
individual head, we slightly adjusted the origin o as follows: a
sagittal plane perpendicular to s and passing through the origin
o intersects with the scalp surface (figure 5). This intersection
defines a curve C that, according to the 10–10 system, is to be
divided in ten equal intervals between Nz and Iz. These are
the intervals, di, i = 1, 2, . . . 10, between adjacent electrodes
on the middle line: Iz, Oz, POz, Pz, CPz, Cz, FCz, Fz, AFz,
Fpz, Nz. These intervals are equidistant and span the length
of curve C (denoted by DC). The origin o was adjusted along
the direction of vector a to minimize the mismatch from this
idealized definition:

10∑

i=1

∣∣∣∣di − 1

10
DC

∣∣∣∣ . (2)

With the optimized origin o, all electrode coordinates defined
on a unit sphere are affine transformed by T and projected
from the origin o onto the scalp surface to obtain the final 3D
coordinates for the electrodes.

For the neck, we calculated the midpoint between the
two neck points as provided by the user. From this midpoint,
projections onto the scalp surface in the anterior, posterior, left
and right directions give the four additional electrode locations
on the neck.

All electrodes were modeled as cylindrical discs of 2 mm
height and 6 mm radius parallel to the local scalp surface
(figure 6(a)). A layer of conducting gel with the same radius
as the electrode was inserted into the 1–2 mm gap between the
scalp and electrode. After electrode placement, the electrodes
and gel were exported as binary masks.

2.5. Finite element model generation and computation

The six tissue masks, along with the placed electrodes,
constitute a volume conduction model for the whole head
(WH) (figure 6). To simulate the current flow distribution
inside the head, the Laplace equation (−∇ · (σ∇V ) = 0,
V : electric potential distribution in the volume; σ : tissue
conductivity) needs to be solved (Griffiths 1999, Datta et al
2009). The conductivity values used for each tissue type are
as follows (in S m−1): GM: 0.276; WM: 0.126; CSF: 1.65;
skull: 0.01; scalp: 0.465; air: 2.5 × 10−14; gel: 0.3; electrode:
5.9 × 107 (Wagner et al 2007, Datta et al 2009). For simplicity,
we did not model anisotropic conductivity, see section 3.4.

For arbitrary shaped media, i.e., arbitrary distributions
of σ , no closed form solution exists and one typically
resorts to numerical techniques. Therefore, the volume is
discretized into a set of finite elements (FE), each with uniform
conductivity, and the Laplace equation is solved at all discrete

12 For the MRI volume which is not in RAS orientation, the electrode
placement program can automatically detect its orientation and convert it
into RAS.

(a) (b) (c)

(d) (e) (f)

Figure 6. Head model established from six tissue types and
electrodes. From (a) to (f): scalp (with electrodes placed), skull,
CSF, GM, WM, air. Note that the air outside the head was removed
in the air mask since it is not needed to model transcranial current
flow.

elements (Logan 2007). We used ScanIP (+ScanFE Module)
to generate the FEM with tetrahedral elements. Given the size
and resolution of the model (1 mm3), it is necessary to use
adaptive meshing (ScanFE-Free algorithm), which chooses
the size of each element adaptively based on the required
detail in the structure. This provides a more compact mesh
size without compromising computational accuracy. In this
study, the FEM we generated consists of approximately seven
million tetrahedral elements, with a generation time of 1–2 h.

Abaqus (version 6.9, SIMULIA, Providence, RI) was used
to solve Laplace’s equation on the FEM. It takes approximately
1–1.5 h to solve the FEM for a specific bipolar electrode
configuration (e.g., Fp1–Iz, see section 2.6). The solution is
the distribution of the electric field E induced by stimulation
with a current density of 1 A m−2. This solution is the output
of the workflow for individualized HD-tDCS modeling.

To perform optimized steering of the applied current
(Dmochowski et al 2011), one needs to generate the electric
field distribution for all bipolar electrode configurations (with
one fixed reference electrode). We generated a Matlab script13

to run FEM simulations in Abaqus automatically for all the
bipolar configurations (i.e., 92 configurations for head 1 and
88 configurations for each of the other heads).

2.6. Evaluation of the automated routine

After automatically correcting segmentation errors, placing
electrodes and solving the FEM, the time needed to construct
a high-resolution (1 mm3) model of HD-tDCS for a specific
electrode configuration is reduced from weeks to several hours,
with the majority of this time consumed by the FEM generation
(1–2 h) and solving (1–1.5 h). The majority of the gain stems
from the automation of segmentation correction. However,

13 Available at http://bme.ccny.cuny.edu/faculty/lparra/autosegment/.
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significant human expertise in establishing tissue boundaries
is lost in this automation. This is important in particular for
chronic stroke subjects whose anatomies deviate significantly
from normal anatomy. To assess how much the automated
correction affects the results, we also constructed manually
corrected models for all heads (performed using ScanIP). We
evaluated the differences by comparing both the segmentation
results and the predicted electric field distributions14 from
these two methods. For the segmentation, we calculated the
deviation of automated results from manual results as the
rate of incongruent voxel assignments (number of missing or
extraneous voxels compared to manual results, Nerr) relative to
the number of total voxels (Ntot) in a given manual mask:

dseg = Nerr

Ntot
, (3)

dseg was computed for all tissue types.
To compare the electric fields, we implemented the bipolar

configuration and also simulated a conventional large pad
electrode on the generated FEM. In the bipolar configuration,
we chose Iz as the cathode, and selected the anode from
three different regions on the scalp: forehead (Fp1), motor
area (C3) and occipital area (O1). We also simulated a distant
reference in head 1: Cz as the anode and the frontal neck
electrode (Nk1) as the cathode. In all other heads, since no
electrode was placed on the neck, electrode pair FT9–FT10
was solved as the simulation of distant reference. In the pad
simulation, the contralateral M1–SO configuration was solved
by simulating an anode pad placed on the right primary motor
cortex (M1, modeled here by a cluster of nine electrodes: FC2,
FC4, FC6, C2, C4, C6, CP2, CP4, CP6), and a corresponding
cathode in the left supra-orbital (SO) area (modeled by a
cluster of eight electrodes: Fp1, AF3, AF7, F1, F3, F5, F7,
FC3). The electric field computed from Abaqus is defined at
all mesh nodes. For the ease of comparing the fields from the
two methods, the solutions on this irregular mesh grid were
imported into Matlab, interpolated onto a regular grid with the
same dimension and resolution (i.e., 1 mm3) as the original
MRI data, and recalibrated to correspond to a 1 mA current
injection. We then calculated the deviation of automated results
from the results obtained with the manual segmentation.
Denoting the automatically and manually obtained electric
fields by Ea and Em, respectively, the deviation follows as:

dfield = ‖Ea − Em‖
‖Em‖ , (4)

dfield was calculated for each voxel (see, for example, the third
row of figure 9), and also for each tissue type (the difference
‖Ea − Em‖ averaged across voxels in that tissue first, then
divided by the average ‖Em‖).

Since clinicians are particularly interested in the areas
of peak activation (presumably corresponding to desired
neurophysiological effects), we also compared the spatial
patterns of these peaks between manual and automated results
(in GM and WM only). The peak area was defined as those
voxels in the brain with electric field magnitude in the upper
quartile, and the Jaccard index (Jaccard 1901) was used to

14 This is equivalent to comparing current flow distributions, since the current
flow is the electric field multiplied by the conductivity.

compare the similarity of the peak areas from manual and
automated results. It is given by

J(Pm, Pa) = |Pm ∩ Pa|
|Pm ∪ Pa| , (5)

where Pm, Pa are the peak masks from manual and automated
results, respectively. A Jaccard index close to 1 indicates higher
similarity while an index close to 0 denotes low similarity. It
was evaluated on each subject for each electrode configuration.

The final purpose of current flow modeling is to select a
specific electrode configuration for treatment. From a practical
point of view, two modeling techniques can be considered
equivalent if they lead to similar electrode configurations
and current flow intensities at the target. Here we are
interested in the optimal configuration of multiple high-
definition electrodes for a realistic treatment scenario. We
therefore use the optimization technique recently developed
for a clinical trial to treat aphasia in chronic stroke patients
(Dmochowski et al 2013). Optimal electrodes were computed
for the automated and manual segmentation results for all
seven stroke patients. The targets are at eloquent peri-lesional
cortical areas (figure 11), and were determined from functional
MRI (Baker et al 2010). An optimal electrode montage
for each subject was calculated by maximizing the electric
field intensity at the target while limiting total current to
2 mA with no more than 1 mA in each electrode (to ensure
safety and comfort). This approach leads in all instances to
a pair of positive and a pair of negative polarity electrodes
(Dmochowski et al 2013).

3. Results and discussion

3.1. MRI segmentation performance

Automatic segmentation was performed on MR images from
11 subjects (four healthy and seven stroke), as described in
section 2.2. Briefly, the SPM8 New Segment routine was
used in combination with an improved TPM with an extended
FOV. Subsequently, the proposed automated correction routine
was applied to correct the errors in segmentation results (see
section 2.3). To establish ground-truth segmentation, we also
manually corrected these errors using ScanIP. Figure 7 shows
one slice of the segmentation results in head 1 after different
methods. We then calculated the deviation of the automated
segmentation from these manually corrected segmentations
(see equation (3)). The deviation dseg is shown in figure 8 for
various tissue types, comparing results for different procedures
and across subjects. Figure 8 also evaluates the effect of
smoothing, as we wanted to know whether smoothing—
which is required for convergence when generating the FEM
in ScanIP—would significantly deteriorate the automated
segmentation results.

As shown in figure 8(a), after automated correction
(without smoothing), the segmentation deviation of the WH
averaged across all subjects is 15%. While the deviations
of CSF, skull and air are somewhat higher (26%, 24% and
54% respectively), the overall deviations are dominated by
the large volume of GM, WM and scalp, which have lower
deviations (18%, 10% and 8% respectively). For each tissue
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(a) (b) (c) (d)

Figure 7. Tissue segmentations for head 1. (a) Raw MRI slice; (b) binarized results from SPM8; (c) results after automated correction;
(d) results after manual correction.
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Figure 8. (a) Segmentation deviations averaged across all subjects for each tissue type and the WH (red error bars indicate standard
deviations across subjects). (b) Segmentation deviations computed across the WH for each subject’s head (healthy heads: H1–H4, stroke
heads: S1–S7) and averaged across AH. (c) and (d) Segmentation deviations averaged across healthy (c) and stroke (d) subjects for each
tissue type and the WH. (NC: no correction, C-S: correction without smoothing, C+S: correction with smoothing).
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Figure 9. The distributions of electric field within GM and WM in head 1 for the manual (first row) and automated method (second row)
under the M1–SO configuration, and the deviation of automated results from manual results (third row). The four columns are the axial,
coronal, sagittal slices, and the surface plot, respectively.

type and the WH, we conducted a repeated measures analysis
of variance (ANOVA) with the three conditions (no correction
[NC], correction without smoothing [C-S], correction with
smoothing [C+S]). The results suggest that the automated
correction technique significantly improved segmentation
performance for all tissue types except WM (GM: F(2, 20) =
19.19, p = 0.000 022, CSF: F(2, 20) = 145.32, p = 1.22 ×
10−12, skull: F(2, 20) = 6.39, p = 0.0072, scalp: F(2, 20) =
5.68, p = 0.011, air: F(2, 20) = 54.50, p = 8.02 × 10−9,
WH: F(2, 20) = 16.03, p = 0.000 07, and WM: F(2, 20) =
0.79, p = 0.47). Indeed, manual correction of WM was
performed conservatively (i.e., only changed as a result of
changes to other tissues). Figure 8(b) shows the segmentation
deviations computed across the WH15 for each subject
(H1–H4: healthy subjects, S1–S7: stroke subjects) and the
average across all heads (AH). A pairwise t-test shows that
the correction procedure improves segmentation performance
(C-S versus NC: t(10) = 6.12, p = 0.000 11, and C+S
versus NC: t(10) = 3.71, p = 0.0040), and that smoothing—
required only for the FEM generation—does not significantly
worsen that result (C-S versus C+S: t(10) = 0.24, p = 0.81).
Also, it is clear from figure 8(b) that the segmentation
performance on the stroke subjects is degraded (7% for healthy,
18% for stroke heads) as a result of the atypical lesion anatomy.
Note that in the stroke cases we have the benefit of using T1
as well as T2 images. Without T2, the performance would

15 The air mask was not included in the ‘WH’ computation under the NC
condition, because the air outside of the head was removed after manual and
automated correction, but it is included in the initial automated results leading
to artificially large differences.

have been further degraded as CSF and bone have similar
intensities in T1 alone. Figure 8(c) and 8(d) show the tissue-
specific results separately for the group of healthy and stroke
heads.

3.2. Current flow modeling results

An automated electrode placement program was developed to
place all high-definition electrodes on the scalp, as described
in section 2.4. Finite element models were then constructed
from both the automatically and manually obtained tissue
masks, plus electrodes and gel (section 2.5). We simulated
various electrode configurations with 1 mA current injection
(see section 2.6). As an example, figure 9 shows the
distributions of electric fields from both methods in GM and
WM for head 1 under the M1–SO configuration. Figure 10
shows the deviation of electric field in the automated masks
from the results computed with the manually corrected
masks (see equation (4)). Figure 10(a) is the electric field
deviations averaged across all subjects, with the red error bars
representing variations among subjects. The average deviation
across the entire head for all subjects and configurations is 23%
(18% for four healthy heads and 26% for seven stroke heads),
and the average deviation in the brain (GM and WM only) is
also 23% (12% for healthy and 29% for stroke heads). These
values are higher than the overall deviation of segmentation
results, indicating that the current flow is sensitive to small
structural differences. Figure 10(b) (blue bars) shows the
electric field deviations computed across the WH for each
subject and the average across all heads, with the red error bars
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Figure 10. (a) Deviations of electric field averaged across all subjects for each tissue type and the WH (red error bars indicate standard
deviations across subjects). (b) (Blue) Deviations of electric field computed across the WH for each subject’s head (H1–H4: healthy heads,
S1–S7: stroke heads) and the average across AH. (Green) Change in locations of the peak electric fields in the brain (top 25%) comparing
manual and automated results (Jaccard index = 1 means perfect overlap, no change). The red error bars represent standard deviations across
different electrode configurations. (Distant Ref.: Cz–Nk1 in H1 and FT9–FT10 in all other heads.)

indicating variations across different electrode configurations.
Note that head 1 has superior performance due to its high image
quality, which will be discussed in detail in section 3.4. From a
clinical point of view, perhaps more important than the overall
field intensities are the locations of maximal stimulation.
Electrode locations for transcranial stimulation are selected
such that ‘hot-spots’ of stimulation coincide with the targeted
brain area (Datta et al 2009, Dmochowski et al 2011). We
determined the voxels in the upper quartile of the induced
electric field magnitude as the peak stimulation, and measured
how it overlaps with that of manual segmentation by using
the Jaccard index (see equation (5)). Figure 10(b) (green bars)
shows the Jaccard index between the peak patterns in the brain
from manual and automated results. An averaged Jaccard value
of 0.76 was obtained when averaging over all the heads and
all electrode configurations, meaning that 76% of areas in the
brain being stimulated remained the same.

3.3. Results of optimized targeting

The optimal electrode configuration for each stroke subject is
shown in figure 11. These configurations maximize the electric
field intensity at the target (Dmochowski et al 2013). The target
location is indicated as an orange dot in the axial MR image.
Electrode montages are depicted schematically (Delorme
and Makeig 2004) for the two approaches with anodes and
cathodes in red and blue, respectively. An approximate location
of the target projected to the scalp is represented by an ‘X’. For
each subject, the results obtained from manual and automated
methods are shown in the middle and right plots, respectively.

The optimal configuration is evidently target- and/or
subject-dependent due to the individuality in head and lesion
anatomy. Given this cross-subject variability, the manually and
automatically obtained electrode montages are quite similar
for some subjects (the two montages are exactly the same
for S1, and same anodes are selected for S2, S4 and S6).
The distance between the centroids of anodes in the manual
and automated results is 1.3 ± 1.8 cm, and 3.6 ± 3.0 cm for
the cathodes. More importantly, when the two montages are
applied on the manually obtained head model for each subject,

the intensity of the optimized electric field at the target is
0.63 ± 0.16 V m−1 under the manually obtained montage,
and 0.58 ± 0.20 V m−1 under the automatically obtained
montage. A pairwise t-test shows that there is no significant
difference between the intensities of electric field at the target
achieved from these two techniques (t(6) = 1.64, p = 0.15).
Therefore, in terms of electrode montages for optimal current
flow targeting, the prescriptions provided by our automated
routine can achieve an electric field intensity at the target that
is not substantially different from that induced by the montages
used in the actual trial (based on careful manual segmentation)
(Dmochowski et al 2013).

3.4. Discussion

Accurate current flow models for HD-tDCS and forward
modeling for HD-EEG require detailed anatomical models
of the human head as well as placement of a large number of
electrodes. Recent modeling work on HD-tDCS (Dmochowski
et al 2012) suggests that individualized modeling can improve
stimulation intensity on target by an average of 50% with the
same total current delivered. EEG source reconstruction can
vary by as much as 66% when a generic standard head is
used instead of individualized head models (Vatta et al 2010).
Obtaining models that cover the required tissue types across
the entire head (not just brain) relies at present on tedious
manual correction of an initial automated segmentation (at
least one week of effort to correct an automated result at
1 mm3 resolution). This precludes the widespread adoption
of individualized current flow models. In addition, manually
placing electrodes and solving the FEM model for a large
number of electrode configurations is a time-consuming
process.

The tools presented here, which we make freely available,
reduce this effort from weeks to hours. The goal of this work is
to present these tools and thoroughly evaluate them in terms of
segmentation accuracy and the impact this has on current flow
models for normal as well as lesioned brain anatomies. The
evaluation focused on segmentation performance and current
flow results in the context of HD-tDCS. For subjects with
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Figure 11. The optimized electrode montages maximizing the electric field intensity at the target for all stroke subjects (S1–S7). Left: axial
view of the anatomical MRI showing the lesion anatomy and the target at a peri-lesional area (orange spot). Middle: the optimal electrode
montage obtained from manual modeling process. Right: the optimal montage from the automated modeling method. The anodes and
cathodes are marked in red and blue, respectively, and the target projected on the scalp is represented by an ‘X’.

normal anatomy, segmentation deviates only by 7%, with that
number increasing to 18% for stroke patients with chronic
lesions. The predicted electric fields on the brain deviate
by 12% and 29% respectively, which is within the spread
observed for different modeling choices (see below). Finally,
optimized current flow intensities on cortical targets do not
differ significantly (see section 3.3).

There are many open-source packages and commercial
software tools for automatic MRI segmentation other than
SPM8, e.g., FMRIB Software Library (FSL, Smith et al 2004),
FieldTrip (Oostenveld et al 2011), FreeSurfer (Dale et al
1999, Fischl et al 1999), ITK-SNAP (Yushkevich et al 2006),
NFT (Acar and Makeig 2010), ASA (ANT Software BV,
Enschede, Netherlands), Curry (Compumedics NeuroScan,
Charlotte, NC), BESA (BESA GmbH, Gräfelfing, Germany)
and Atropos based on ANTs (Avants et al 2011). A one-to-
one performance comparison with these other segmentation
tools was not the purpose of this work. We selected SPM8
primarily for practical considerations: in our hands, none of
these other tools were able to automatically segment all the

six tissues in the extended FOV as effectively as SPM8 New
Segment. FSL Brain Extraction Tool (BET, Smith 2002) and
FieldTrip can extract the skull and scalp surfaces, but it only
operates on the standard FOV (the brain area only). FreeSurfer
appears slow in segmentation (22 h for one head, see Windhoff
et al (2011)). ITK-SNAP and NFT need user-specified seed
point(s) to start segmentation and thus they are not fully
automated. ASA and Curry do not provide segmentation for
CSF, which is crucial for tDCS and EEG forward modeling.
BESA can segment out CSF, but the result is not accurate (with
discontinuities). Atropos is a good software for segmentation,
but our prior probability image (TPM) was developed under
SPM8. Therefore, combined with the improved TPM and the
automated correction routine, SPM8 is our preferred choice
for automated segmentation.

Automated pipelines exist for tDCS current flow modeling
which can be combined with our tools at the front-end
of these pipelines (Windhoff et al 2011, Dannhauer et al
2012). This may be useful in particular if one wishes to
circumvent proprietary softwares (ScanIP and Abaqus) and
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use free tools such as iso2mesh (Fang and Boas 2009) and
GetFEM++ (Renard and Pommier 2010) for meshing and FEM
solving. The results provided here are equally applicable to any
processing pipeline with our tools at the front end as meshing
and FEM solving should give similar, if not identical, solutions.
In fact, we have compared our results with iso2mesh and
COMSOL (COMSOL Inc., MA) at various mesh resolutions
and deviations of results are in the range of 2–4%, which is a
generally acceptable tolerance for FEM modeling.

We have not numerically evaluated the accuracy of
electrode placement in this work. Given the diversity of head
sizes and shapes as well as electrode cap sizes, it is a standard
practice to adjust the flexible caps to assure a good match of
actual positions with the desired locations. Whenever possible
one should use commercially available electrode positioning
systems to guide this adjustment of the electrode cap (e.g.
Polhemus tracker). For this purpose, our software provides the
exact 3D coordinates of the electrodes in the original MRI
coordinate system. In our experiments, we have provided the
3D rendering (figure 6(a)) and electrode locations of the model
to the experimenters so as to facilitate proper cap adjustment
(Dmochowski et al 2013).

To the best of our knowledge, there are only a few
modeling studies for stroke patients, e.g. Wagner et al (2007)
and Datta et al (2011), and they use conventional manual
segmentation. A few automated segmentation algorithms
do exist that are specifically intended for lesioned brain
anatomies, e.g. Seghier et al (2008). We did not test these
in detail as we found the results with the proposed method
satisfactory.

To evaluate the performance of the automated routine,
results from the manual method are needed. Since the output
from the automatic segmentation algorithm includes six tissue
types in a large FOV (down to the neck), the manual
segmentation results are expected to contain the same number
of tissue types. While there are publicly available standard
MR image databases (e.g. the Internet Brain Segmentation
Repository, IBSR16), to the best of our knowledge, none of
them provide expert-level manual segmentation for all the
six tissue types in the same FOV. Therefore, we did not use
any public data to perform the evaluation, but rather relied
on our own MRI data. It should be noted that our manual
segmentation was done by engineers, not radiologists. So it
is by no means a ‘gold’ standard. There is a significant level
of ambiguity when segmenting MR images (in particular for
voxels on tissue boundaries). Even expert segmenters make
different judgments on how to assign ambiguous voxels. In
one study (Rajapakse and Kruggel 1998), expert operators
segmenting the same brains obtained Jaccard indices of 0.876
and 0.832 for GM and WM, respectively. This means that
there is a disagreement of about 15% between two manual
segmentations. The disagreement between the automated and
manual segmentation obtained here is on average 15%.

It should also be mentioned that the MR image quality
and contrast among the GM, CSF and skull directly affect
the performance of this automated routine. The manual
segmentation is more difficult and may be more variable if

16 Available from www.cma.mgh.harvard.edu/ibsr/data.html.

the image quality is poor, and the automated segmentation
algorithm cannot correctly delineate the layers of GM, CSF,
and skull around the parietal area if the contrast there is
low. Therefore, low image quality and contrast will lead to
more differences between manual and automated results in
segmentations and electric field distributions. This can be
observed from figure 8 and 10, where it is shown that head 1 has
the best performance, and healthy heads (H1–H4) generally
have a better performance than stroke heads (S1–S7). In fact,
head 1 is the best scan in terms of image quality and contrast.
The increased deviation observed for the stroke heads likely
results from the bias introduced by the TPM toward normal
anatomy, which is beneficial, when normal anatomy is indeed
present. Specifically, the present sample represents cases of
chronic stroke with large lesions that are filled with CSF in
areas predicted by the TPM to contain either GM or WM.

The proposed automated correction technique contains
a few free parameters which can affect its performance
(see section 2.3): for instance, the size of the structural
element used in the process of filling-in CSF discontinuities.
We assume that the brain is entirely engulfed in CSF, but
imaging noises combined with the limited resolution lead
to discontinuities (CSF thickness in some locations is close
to the sampling resolution of 1 mm3). To be conservative
in preserving the original anatomy, the size of the structure
element should be small. However, if it is too small, then
remaining discontinuities will lead to significant differences
in the electric field predictions. This is the origin of the >50 %
deviations in CSF (figure 10(a)). Since we do not have a
large population of MRI data to perform systematic parameter
selection, we determined all parameters by hand. Future work
may attempt to automatically determine free parameters in the
automated correction technique based on image quality.

It should be noted that to avoid convergence problems
when generating the FEM in ScanIP, all of the heads in
this study were smoothed to some extent. Noisy MR images
typically required more smoothing to even out rough tissue
surfaces resulting from image noise. At the same time,
smoothing disrupts some details of the segmentation, and
as such was used conservatively. Indeed, the change in
segmentation performance as a result of smoothing was not
statistically significant in this sample. Future work will aim
to integrate smoothing and segmentation into a single step by
merging Markov random field models (Roche et al 2011) with
the New Segment formalism (Ashburner and Friston 2005).

Skull bone is an inhomogeneous three-layered structure.
The outer layers consist of compact cortical bone while
the middle layer is spongy bone containing fatty marrow.
Current segmentation algorithms do not make this distinction,
primarily because no prior probability map is yet available at
this level of detail. This differentiation is important because
these two types of bone have different electrical conductivities
(Dannhauer et al 2011). Fortunately, there is evidence that a
more detailed three-layer bone model does not significantly
change electric field estimates at the level of the brain as
compared to a single-layer model (Rampersad et al 2012).
However, there is nothing that prevents the present approach
from incorporating this level of detail once a corresponding
TPM becomes available.
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There are a number of approaches to convert diffusion
tensor imaging (DTI) data to conductivity tensor data thereby
incorporating anisotropy in the modeling for tDCS (Windhoff
et al 2011, Neuling et al 2012, Suh et al 2012, Shahid
et al 2013). However, in clinical practice DTI may be less
viable due to the longer acquisition time and the cumbersome
software tools for combining DTI with FEM modeling. More
importantly, the exact relationship between electric and DTI
anisotropy has not yet been established experimentally, and
thus there is a certain level of arbitrariness to the different
choices made by these techniques (from 3% to 58% difference
in current flow distribution compared to isotropic modeling
(Suh et al 2012, Shahid et al 2013)). In this context, the average
23% disagreement in our work between automated and manual
methods seems to be well within variability resulting from
specific choices that the modelers have to make.

The most severe limitation, not only to this study but
to all tDCS modeling studies, is that to date there is no direct
experimental validation of any of the estimated field intensities
inside the head. Initial efforts to validate the models have been
limited to voltage recordings on the surface of the scalp (Datta
et al 2013) and indirect measurements using functional MRI
(Antal et al 2012). It would seem that the level of precision
in modeling has advanced to a point where further meaningful
improvement is not possible without empirical confirmation.
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Naturelles 37 241–72
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