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ABSTRACT

Previous approaches for extracting real-time proportional

control information simultaneously for multiple degree of

Freedom(DoF) from the electromyogram (EMG) often used

non-linear methods such as the multilayer perceptron (MLP).

In this pilot study we show that robust control is also possible

with conventional linear regression if EMG power measures

are available for a large number of electrodes. In particular,

we show that it is possible to linearize the problem with sim-

ple nonlinear transformations of band-pass power. Because

of its simplicity the method scales well to high dimensions, is

easily regularized when insufficient training data is available,

and is particularly well suited for real-time control as well as

on-line optimization.

Index Terms— Electromyography (EMG), myoelectric

control, simultaneous control, linear regression, upper limb

prosthesis.

1. INTRODUCTION

The signal processing and analysis of surface electromyo-

gram (EMG) for the control of multifunction upper limb

prostheses has been extensively investigated for over 30

years. Particularly, in the past decades, a number of studies

have shown that classification algorithms for surface EMG

can achieve close-to-excellent results (refer to [1] for a re-

cent review). However, there is no commercially available

prosthesis that utilizes this control approach. This consti-

tutes a sharp contrast between the academic state-of-the-art

(SOA) and the industrial SOA in this field. There are many

reasons for such a dichotomy [2]. On the aspect of EMG

signal processing, the sequential and on/off control approach
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provided by classification algorithms is very different from

the natural control approach of the neuromuscular system, i.e.

simultaneous and proportional control of multiple degree-of-

freedoms (DoF). Therefore, natural control is still allusive.

Consequently, the user acceptance of such control is very

low, except for the few cases of targeted muscle reinnervation

(TMR) patients, where nerves are surgically transferred to

achieve additional control signals [3].

However, for many amputees, TMR is not possible. For

example, trans-radial amputation, which corresponds to the

largest portion of upper extremity deficiency, would not ben-

efit from the TMR procedure. Therefore, extracting simul-

taneous and proportional control information from surface

EMG remains a pressing and challenging problem. In recent

years a number studies explored signal processing approaches

that would allow for simultaneous and proportional control

of multiple DoFs [4],[5],[6],[7],[8]. In these studies, it was

shown that such an intuitive control approach is possible,

by using methodologies such as non-negative matrix fac-

torization (NMF) [4] or multilayer perceptrons (MLP) [7].

However, estimates obtained with NMF-based algorithm of-

ten have overshoots, particularly when muscle contractions

are high. On the other hand, MLP-based approach need fine

tuning of the model parameters, such as the number of hidden

neurons, to avoid over-fitting. Also, the MLP is essentially

a black-box approach, which makes it difficult, if not impos-

sible, to interpret the physiological relevance of the internal

parameters.

In this paper we show in an offline analysis that, for si-

multaneous and proportional control, it is possible to use a

simpler model than MLP and increase performance, if suit-

able features are used.

Our approach is based on linear regression so it does not

need any internal parameters to be chosen. This makes the

results intrinsically more stable and allows a very fast and

responsive implementation of the control system with more

easily interpretable results.
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Fig. 1. Experimental Setup

2. METHODS

2.1. Experimental Setup

EMG was recorded from the forearm of one healthy subject

performing a series of wrist movements. Accurate data labels

were gained with a motion tracking system (figure 1b).

EMG was recorded with a high density 192-channel elec-

trode array (ELSCH064NM 3-3, OT Bioelettronica, l8 x 24

channels, 10 mm inter-electrode-distance) in a monopolar

derivation. The electrode was placed on the proximal portion

of the upper forearm, covering a range of 8 cm.

The biosignal amplifier was a 12 bit ”OT Bioelettron-

ica EMGUSB-2”, configured to a sampling rate of 2048Hz.

Ground and reference electrodes formed by two electrode

bands placed at the proximal end of the forearm. Motion

signals were recorded with an Xsens motion tracking sys-

tem with the MTx sensors, which is synchronized with the

EMG amplifier by a customized Matlab interface [9]. The

procedure of calculating the joint angles of the two DoFs of

the wrist: flexion/extension and radial/ulnar deviation was

presented in [10]. The experimental paradigm included ex-

tensive combinations of these two wrist DoFs. In previous

studies, more DoF were investigated [4],[7],[6], but less data

with gradually combined DoFs was used. The goal for the

present paradigm was to cover most of the possible range of

simultaneous activations of these two DoFs.

The target trajectories that the subject was instructed to

follow are shown in Figure 1a, and include moving the wrist

in 16 different directions, and drawing contour lines of two

different diameters, each in both directions (clock/count-

clock). At the beginning of each session, the individual range

of motion in both DoFs of the subject was measured, and the

paradigm was automatically calibrated in such a way that the

trajectories would move from the center (rest position) to the

maximal range of motion for each direction, and that the two

contour lines would be located at 90% and 60% of the max-

imal range of motion. The time from the center position to

the maximal position was 3s, followed by 2s remaining in the

maximal position and 3s for returning to center position. The

time for a full contour movement was 10s. The experiment

was divided into 18 runs, where each run contained each type

of trajectory (16 lines and 4 ellipses) exactly once. During

the recordings, the target wrist position was displayed on a

computer screen together with the actual position obtained

by the motion tracking system (fig. 1c). This online feedback

helped the subject in better matching the target trajectories.

An example of the recorded motion data is shown in figure

2. The experiment was in accordance with the declaration of

Helsinki and was approved by the local ethics commission.

(Ethikkommission d. Med. Fak. Göttingen, approval number

8/2/11)
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Fig. 2. Recorded motion traces

2.2. Preprocessing

The data were filtered using a 4th order Butterworth high-

pass ( fc = 20Hz) to remove movement artefacts, a lowpass

( f c = 500Hz) to remove high frequency noise and a 50 Hz

comb filter to remove line interference, including harmonics.

Sample-wise common mean subtraction was performed to re-

move correlated noise and distortion that might be caused by

activity at the reference electrode.

2.3. Feature Extraction

The features were extracted from non-overlapping intervals of

200 ms. This window duration is within the acceptable time



delay between user command and prosthesis action [11],[12].

The power of the EMG signal increases monotonically with

increased contraction force of the underlying muscles. Thus,

features that reflect the power of the EMG contain relevant

information for myocontrol.

To obtain good estimation results when using linear meth-

ods the relationship between the features and the target la-

bels (i.e., the motion data) should be as linear as possible.

In the current study, we evaluated three different features.

The first is the EMG band power signal that we denote as

xpower(ti) ∈ R
192, were each ti corresponds to the average

over one 200 ms window. The other two features are root-

mean-squares (rms) xrms(ti) =
√

xpower(ti) and log-var [13]

xlog-var(ti) = log xpower(ti) that are just non-linear transforma-

tions of xpower(ti). These transformations aim to linearize the

relationship between features and joint angle (the label y), as

seen in figure 3 a-f.

2.4. Linear Regression

In linear regression [14, 15] a target variable y ∈ RDy is

modeled as a linear mapping W ∈ RDy×Dx from the Dx-

dimensional space of input variables to the Dy-dimensional

target space

Y = W⊤X (1)

where the matrix X ∈ RDx×T = [x(t1), x(t2), . . . , x(tT )] con-

tains a set of feature vectors from T time instances and the

matrix Y ∈ RDy×T = [y(t1), y(t2), . . . , y(tT )] contains the true

target variable values. In our scenario the dimensionality of

the input space is the number of sensors on the electrode grid,

i.e. Dx = 192; the dimensionality of the labels is Dy = 2,

corresponding to the joint angles of two DoFs (vertical and

horizontal deflections). The maximum likelihood solution to

(1) in the case of multivariate target variables is the same as

for univariate targets, see e.g. [16]. We obtain the optimal W

that minimizes the mean-squared error by the ordinary least

squares solution

W = (XX⊤)−1XY⊤. (2)

Note that in (2) the mapping W from sensors to joint angles

is optimized for all DoFs simultaneously. The only computa-

tions involved are the pseudo-inverse (XX⊤)−1X and a ma-

trix multiplication with the training labels Y, which are of

negligible computational cost. If needed, the estimate of W

can be made more robust by including a ridge on the covari-

ance matrix XX⊤, a standard regularization technique known

as Tikhonov regularization [17]. This can be useful, e.g. if

the amount of training data is limited.

2.5. Reference method MLP

The proposed method was compared with results obtained by

the MLP approach presented in [7],[6]. Briefly, two MLP net-

works were used to estimate the joint angles of the two DoFs,

respectively. For each MLP, a 3-neuron hidden-layer with hy-

perbolic tangent sigmoid transfer function was implemented.

The input layer and the output layer had linear transfer func-

tions. The inputs were formed by the features, projected down

to the strongest PCA components describing 98% of the vari-

ance. The MLP was trained with the Levenberg-Marquardt

back-propagation algorithm. All MLP training was imple-

mented with the Matlab neural network toolbox.

2.6. Cross-validation

To evaluate the performance five-fold-crossvalidation was ap-

plied. The folds were formed by entire runs and only the first

15 runs where included. This was done in order to keep train-

ing and test set not only disjoint but as independent as pos-

sible and to guarantee a balanced appearance of movements

within both sets. As a performance metric we used the r-

square value[18]:

r2 = 1 −

∑

d Var(yd − ŷd)
∑

d Var(yd)
(3)

where yd are the observed wrist deflections angles and ŷd are

the estimated angles predicted by the models. An r-square

value of one corresponds to perfect estimation and zero to

chance performance.

3. RESULTS

Figure 3 provides visualization of the linearization of the fea-

ture space and the effects to the estimation.

Since it is impossible to visualize the relationship between

the labels and the feature space in full dimension, the features

were averaged over all channels. Although this ”feature inten-

sity” does not contain enough information for the regression

task, it could give insights to the complexity of the underlying

relationship.

The top row (a-c) illustrates the relationship between joint

angle in polar coordinates and EMG feature intensity. Several

trials of the wrist movements from the origin to eccentric po-

sitions are reported. The x-axis shows the distance from cen-

ter position, y-axis feature intensity and different target direc-

tions are distinguished by the different colors. The lines are

curves obtained by polynomial fitting. This fitting is biased

by the chosen model complexity, but the order was the same

for all three cases and chosen sufficiently high.

Prediction with band power features Plot (a) in figure 3

illustrates the nonlinear relationship between EMG band

power and joint angle; for joint angles close to the origin,

there is an almost linear relationship between xpower(t) and

y(t), whereas for positions far from the origin the EMG band

power is disproportionally increased. When estimating the

mapping W on this data with linear regression (eq. 1), the
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Fig. 3. Visualization of mean features vs. joint angle in polar coordinates (a-c), and corresponding label estimation from

cross-validation (d-f)

predicted joint angles cannot be modeled well, as depicted in

figure 3d: for joint angles close to the origin, the predicted

joint angle is underestimated while at joint angles far from

the origin, the predicted joint angles tend to be overestimated.

This is due to the fact that linear combinations of band power

signals cannot compensate for the nonlinearity mentioned

above. The suboptimal performance is also reflected in a

rather low r2 value of 0.67±0.04 (mean ± std.), see figure 4.

Prediction with rms features The panels in the middle col-

umn of fig. 3 show data and results for the square root of the

band power features. Panel b illustrate that the nonlinearity

between joint angle and EMG features is not as pronounced as

in the case of the band power features in panel a. This leads to

a better prediction performance, as visualized in fig. 3e. A di-

rect comparison of the cross-validation results in fig. 4 shows

that joint angle is better predicted when using rms features, as

indicated by a better r2 value of 0.84 ± 0.03.

Prediction with log band power features The results ob-

tained when taking the log of the EMG band power are de-

picted in the panels in the right column of fig. 3. In contrast

to the other two features, the relationship between joint an-

gles and EMG log band power is approximately linear, as il-

lustrated in panels c/f. This leads to a significantly better pre-

diction accuracy as shown qualitatively in fig. 3f. In contrast

to the other two feature types, there is less under or overesti-

mation at small or large targets.

Figure 4 shows that log band power features predict the

joint angle best as indicated by a competitive r2 value of over

0.88 ± 0.03.
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Fig. 4. xval results (r-square value), the error bars indicate

inter fold standard deviation



Comparison with Baseline Method MLP For the band

power features with no linear relationship the non-linear

baseline method MLP performs better than linear regression,

as indicated by a higher r-square value. For the transformed

features rms and log-var linear regression performs better

than MLP. Especially for the log-var features that have an

almost linear relationship to the targets linear regression per-

forms significantly better than MLP.

4. DISCUSSION

We showed that a simple linearization of the feature repre-

sentation in combination with linear regression can lead to

results that are better than those obtained with the nonlinear

MLP method. The approach presented here has several ad-

vantages over more complex nonlinear models. First, we can

interpret the estimated parameters. The mapping W, directly

resides in the sensor space. The better accessibility of the

model parameters in our approach allows for incorporation of

prior knowledge into the model. Another advantage is that the

simpler the model the less likely is the danger of overfitting.

This is a very desirable feature for real world applications in

prostheses. Often not all regimes of the EMG input space can

be sampled equally well when acquiring training data. Gen-

eralization to new data from these under-sampled regimes is

difficult when nonlinear methods are over-fitted to only those

data regimes where training data was available. A standard

method to prevent overfitting to the training data is to restrict

the predictor to a simple model class. In our approach we re-

stricted the predictor functions to the class of linear models,

thereby ensuring that not too complex mappings from EMG

signals to joint angles can be learned.

5. CONCLUSION

We presented a simple, robust and efficient method for lin-

earizing the problem of simultaneous and proportional my-

oelectric control of multiple DoFs. Our approach is based

on a log transform of the EMG band power signal. This lin-

earization of the nonlinear relationship between EMG signal

and joint angles allows for applying a simple linear model for

myoelectric control of prostheses. Future work includes more

empirical evaluations on a larger group of subjects and more

DoFs. Also subjects with uni-lateral limb deficiencies will be

included where the position labels might be gained from the

intact-side when performing mirrored movements (see also

[7]). A special focus will have to be placed on the evaluation

in an online setting. In the online setting, future work will

have to compare our approach with complex nonlinear pre-

diction methods. We expect that the robustness and efficiency

of linear regression will make training easier as compared to

nonlinear methods. This will be of special importance in fu-

ture applications in real prostheses.
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