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Abstract

In this paper we use single-trial analysis of electroencephalography (EEG) to ascer-
tain the cortical origins of response time variability in a rapid serial visual presen-
tation (RSVP) task. We extract spatial components that maximally discriminate
between target and distractor stimulus conditions over specific time windows be-
tween stimulus onset and the time of a motor response. We then compute the peak
latency of this differential activity on a trial-by-trial basis, and correlate this with
response time. We find, for our nine participants, that the majority of the latency
is introduced by component activity which begins far-frontally 200 ms prior to the
response and proceeds to become parietally distributed near the time of response.
This activity is consistent with the hypothesis that cortical networks involved in
generating the late positive complexes may be the origins of the observed response
time variability in rapid discrimination of visual objects.
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1 Introduction

Important for understanding the relationship between neural activity and be-
havior is identifying the cortical origins of behavioral variability. In many
visual discrimination and recognition tasks significant variability in response
time is observed across trials. This variability may be due to a variety of fac-
tors ranging from the difficulty in discriminating an object on any given trial,
trial-by-trial variability of the subject’s engagement in the task, or intrinsic
variability of neural processing. Identifying neural activity that is correlated
with response time variability may shed light on the underlying cortical net-
works responsible for perceptual decision making processes and the processing
latencies that these networks may introduce for a given task.

Neural origins of response time variability have been extensively studied in
animals, including primates, using single and multi-unit recordings. For ex-
ample, (Roitma and Shadlen, 2002) have shown that for a two alternative
forced choice (2-AFC) motion discrimination task, the latency observed in a
monkey’s response (saccades to the target) is directly related to the integra-
tion of evidence (percent coherence) by neurons in lateral inter-parietal cortex
(LIP). LIP activity can thus be used to directly predict the time of the sac-
cade, with variability in response time correlated with the time at which the
LIP activity reaches a given threshold. Though important for understanding
the relationship between neural activity and behavioral variability, this work
has been confined to the study of response time variability in animals, given
the invasiveness of the recordings, as well as highly spatially localized (single
neurons) activity predictive of response time. We therefore wanted to consider
whether the neural origins of response time variability could be identified in
human subjects and the specific spatial and temporal distribution of that ac-
tivity.

To study response time variability in humans requires a non-invasive approach.
Modalities such as functional magnetic resonance imaging (fMRI) have been
used extensively to study cortical activity and its relationship to behavior
(Toga and Mazziotta, 2000). Though by current non-invasive functional imag-
ing standards fMRI possesses excellent spatial resolution, it has limited tempo-
ral resolution (Kim et al., 1997). Since response times across trials can vary on
a millisecond time scale, fMRI does not possess sufficient temporal resolution
to disentangle the cortical sources of response time variability.

Traditionally, psychophysiologists have exploited electrophysiological responses
to stimuli to infer the nature of cognitive processes with millisecond precision.
Long studied event-related potentials (ERPs), such as the visually evoked po-
tential, N200, P300, readiness potential, and error related negativity, arise
from neural tissue in regions believed to be associated with visual stimulus
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encoding, classification, recognition, motor planning, and response evaluation.
These potentials, derived by stimulus or response locked trial-averaging, are
used to develop and validate models describing the timing and interactions
between mental processes.

Interaction between stimulus characteristics and ERP features that co-vary
with response time provide evidence for hypotheses concerning the nature of
information transfer between mental processes. For instance, one study exam-
ined the effects of luminance on response time and early components of the
visually evoked potential during a simple reaction task. Correlating response
times at different luminances with peak latencies of N80, P100, and N130 re-
veals that the slope of linear regression increases with successive ERP peaks
(Kammer et al., 1999). This finding indicates dispersion along early visual pro-
cessing stages and suggests that successive processes introduce greater delays
which result in increased response times.

Surprisingly, few studies have yet to explore the correlation between single-
trial variability of response times and late potentials (> 150 ms) associated
with visual recognition. Those that do exist have focused primarily on char-
acterizing the functional significance of P300. For instance during a forced
choice visual discrimination task, P300 latency and response time were signif-
icantly influenced by stimulus discriminability, while only response time was
significantly affected by stimulus-response compatibility indicating that P300
is sensitive to stimulus evaluation processes rather than processes related to
response selection and execution (McCarthy and Donchin, 1981).

In this paper we consider target detection using a rapid serial visual presenta-
tion (RSVP) paradigm and use single-trial spatial integration of high-density
electroencephalography to identify the time course and cortical origins leading
to response time variability. High spatial density EEG permits the extraction
of spatial components that optimally discriminate between task conditions
(Parra et al., 2002). We use linear discrimination to determine spatial weight-
ing coefficients that optimally discriminate between EEG resulting from dif-
ferent RSVP task conditions over specific temporal windows between stim-
ulus and response. Spatial integration enhances signal quality without loss
of temporal precision common to trial averaging in ERP studies. The result-
ing discriminating components describe activity specific to target recognition
and subsequent response. We estimate peak amplitude and latency of dis-
criminating components by fitting a parametric function for the component
to individual trials. The parameters of these fits are then used to estimate the
fraction of response time variability introduced by processing stages involved
with target recognition.
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2 Methods

2.1 Participants

Nine participants (3 females and 6 males, mean age 29 years, range 21–37
years) from the Columbia University community volunteered and received no
payment. All had normal or corrected to normal vision and reported no history
of neurological problems. Informed consent was obtained from all participants
in accordance with the guidelines and approval of the Columbia University
Institutional Review Board.

2.2 Data acquisition

EEG data was acquired in an electrostatically shielded room (ETS-Lindgren,
Glendale Heights, IL) using a Sensorium EPA-6 Electrophysiological Amplifier
(Charlotte, VT) from 60 Ag/AgCl scalp electrodes mounted in a standard
electrode cap (Electro-Cap, Eaton, OH) at locations based on the International
10-20 system and from three periocular electrodes placed below the left eye
and at the left and right outer canthi. All channels were referenced to the left
mastoid with input impedance < 15kΩ and chin ground. Data was sampled
at 1000 Hz with an analog pass band of 0.01–300 Hz using 12 dB/octave high
pass and 8th order Elliptic low pass filters. Subsequently, a software based
0.5 Hz high pass filter was used to remove DC drifts and 60 Hz and 120 Hz
(harmonic) notch filters were applied to minimize line noise artifacts. These
filters were designed to be linear-phase to prevent delay distortions. Motor
response and stimulus events recorded on separate channels were delayed to
match latencies introduced by the digital filtering of the EEG.

2.3 Behavioral paradigm

During the RSVP task, participants were presented with a continuous se-
quence of natural scenes. Participants completed four blocks of 50 sequences
each with a rest period lasting no more than five minutes between blocks.
Each sequence consisted of 50 images and had a 50% chance of containing one
target image with one or more people in a natural scene. These target images
could only appear within the middle 30 images of each 50 image sequence.
The remaining natural scenes without a person are referred to as distractor
images. Each image was presented for 100 ms. A fixation cross was displayed
for 2 seconds between sequences. Participants were instructed to press the left
button of a generic 3-button mouse with their right index finger while the
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Fig. 1. Example Rapid Serial Visual Presentation (RSVP) trial. A fixation cross
lasting two seconds is followed by a sequence of 50 images. Each sequence has a
50% probability of containing one target image. This target can only appear within
the middle 30 images to ensure that a one second image buffer precedes and follows
the target.

fixation cross was present, and release the button as soon as they recognized
a target image. An illustration of this paradigm is given in Figure 1.

2.4 Stimuli

Images were selected randomly with replacement from a queue of 251 non-
target and 33 target gray scale images. Images were obtained with a Ko-
dak DCS420 digital camera with a 28mm camera lens (Rochester, NY) (van
Hateren and van der Schaaf, 1998). Images were deblurred and the size of the
images was reduced from 1536x1024 pixels to 640x426 pixels to ensure precise
timing of stimulus presentation. The images were nonlinearly transformed via
gamma correction to match their mean luminance. The fixation cross display
had the same mean luminance as the images. A Dell Precision 530 Workstation
(Round Rock, TX) with nVidia Quadro4 900XGL graphics card (Santa Clara,
CA) and E-Prime software (Psychological Software Tools, Pittsburgh, PA)
controlled stimulus display. An LCD projector (InFocus LP130, Wilsonville,
OR) projected stimuli through an RF shielded window onto a front projection
screen. Stimuli subtended 33°±3°×25°±3°of visual field. Target images were
visually inspected to ensure that target objects did not comprise more than
25% of the area (fraction of pixel) in the scene.
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2.5 Eye movement artifact reduction

Immediately prior to the RSVP task, participants completed an eye motion
calibration experiment during which they were instructed to blink repeatedly
upon the appearance of a white on black fixation cross and then make several
horizontal and vertical eye movements according to the position of a fixation
cross subtending 1°× 1°of the visual field. Horizontal eye movements subtended
33°±3°and vertical eye movements subtended 25°±3°. The timing of these vi-
sual cues was recorded simultaneously with EEG. This enabled determination
of linear components associated with eye blinks and eye movements that were
subsequently projected out of EEG recorded during the RSVP task.

Components for horizontal and vertical eye movements were derived from
the difference in the means across samples during which participants held
left/right and up/down eye positions.

vh = 〈x(t)〉left − 〈x(t)〉right

vv = 〈x(t)〉up − 〈x(t)〉down (1)

x(t) is an column vector representing N scalp potentials sampled at time t,
and 〈x(t)〉condition represents a sample average over times corresponding to
the respective conditions. The eye blink component, vb, was derived as the
orientation in N dimensional space that captured most of the power in the
signal, i.e. the first principal component, during a series of eye blinks. With
this information eye movement artifacts can be subtracted from the data with:

x(t) ←
[
I −VV#

]
x(t) (2)

where, V = [vb,vh,vv], is an N ×3 matrix containing the vectors correspond-
ing to the components of the eye-blink and left/right and up/down saccades,
and V# is the pseudo-inverse of V. In the new EEG data x(t), the activity
due to eye movement artifacts has been subtracted.

2.6 Spatial integration for identifying discriminating components

Conventional event-related potential (ERP) analysis relies on averaging across
trials to boost the amplitude of EEG components associated with event related
neural activity while minimizing the contribution from uncorrelated neural
activity and artifacts due to muscle activity and environmental noise. Aver-
aging across trials inevitably conceals variability in amplitude and latency of
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EEG components which may provide insight into interactions between corti-
cal sources responsible for behavioral responses. Clearly single-trial analysis
of EEG is difficult due to the presence of interference and artifacts. One com-
mon approach is to sum the activity across electrodes rather than across trials.
Typically a weighted sum of the electrode activity is used to generate a new
composite signal, sometimes referred to as a component of the EEG signal.
For instance, independent component analysis (ICA) (Hyvärinen et al., 2001)
finds a set of weight vectors such that the corresponding component signals are
statistically independent. Applying this method to EEG typically finds several
task and artifact related components (Makeig et al., 1996, 1999, 2004). The
identity of each component must be determined by inspection. This problem
is alleviated when discriminating between EEG evoked by multiple conditions.
The method of common spatial patterns (Ramoser et al., 2000) finds a set of
weight vectors such that the power of the resulting components are maximally
discriminative. Typically 10% of these components are associated with cortical
activity describing differences between conditions. The temporal relationship
between such components may not be clear.

Logistic regression can be used to find an optimal basis for discriminating
between two conditions over a specific temporal window (Parra et al., 2002).
Discrimination permits us to study differences between EEG resulting from
task conditions. Specifically, we define a training window, shown in Figure 2,
starting at a relative onset time τ , with a duration of δ and orientation θ
(relative to response time) and use logistic regression to estimate a spatial
weighting vector wτ,δ,θ which maximally discriminates between sensor array
signals for two conditions, c ∈ (0, 1), where c = 1 represents a target trial and
c = 0 a non-target trial. The spatial weighting vector generates a component 1

yc(t) = wT
τ,δ,θxc(t), (3)

that best separates the EEG signals by making y0(t) < y1(t) for as many
samples in the training window as possible. The result is a discriminating
component specific to target recognition activity while minimizing activity
correlated with both task conditions such as early visual processing.

The assumption in logistic regression is that the data when projected onto
coordinate, y = wTx + b, is distributed according to a logistic function, i.e.
the likelihood that sample x belongs to the class of positive examples, c = 1,
follows

1 We use the term “component” instead of “source” to make it clear that this is a
projection of all the activity correlated with the underlying source.
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Fig. 2. Parameters of the training window defined for logistic regression (Equa-
tion 3). We define a training window starting at a relative onset time τ , with a du-
ration of δ and orientation θ (relative to response time). Shown are three examples of
training windows with τ = −400ms, θ = 0% (blue sigmoids), τ = −200ms, θ = 50%
(green sigmoids) and τ = 0ms, θ = 100% (red vertical lines). The duration of all
training windows is δ = 50ms.

p(c = 1|x) = f(y) =
1

1 + e−y
=

1

1 + e−(wT x+b)
. (4)

This likelihood is parameterized by the projection vector w and a bias b. The
likelihood for negative examples, p(c = 0|x) = 1− f(x), is also a logistic. The
hyper-plane orthogonal to w and shifted by b from the origin divides the two
classes. w is estimated by minimizing the negative log-likelihood of the data
with respect to the model parameters:

wLR =argmin
w

−L(w, b)

= argmin
w

(−∑
t

log p(ct|yt)) (5)

There are no closed form solutions to this optimization problem. However,
the maximum can be computed using a fast algorithm based on Iteratively
Re-weighted Least Squares (IRLS) (McCullagh and Nelder, 1989). It is a type
of Newton-Raphson gradient descent algorithm where the Hessian is given by
the Fisher information matrix:
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w(k+1) = w(k) − E

[
∂2L(w)

∂w∂wT

]−1
∂L(w)

∂w
. (6)

A more detailed description of this method and its relationship to other linear
classification techniques for EEG can be found in (Parra et al., in press) 2 .

The choice of the discrimination time window is crucial as this selects the time
frame for which the evoked response difference is extracted. The time window
could be chosen at a fixed time after the stimulus onset (stimulus locked), at
a fixed time prior to the response (response locked), or at some intermediate
form of locking, which we refer to as the orientation of the window (θ) and
quantify with, 0% ≤ θ ≤ 100%. Specifically the time window for the j-th trial
is chosen as tj ∈ [Tj − δ/2, Tj + δ/2] with Tj = τ + (rj − 〈rj〉) ∗ θ, where rj

represents the subject response time and 〈rj〉 is the mean response time. The
duration of the training window was δ = 50 ms and the window onset τ was
varied in 10 ms increments to extract the progression of the activity over time.
In Figure 3 the training windows are indicated by the white curves.

Only correctly identified trials were included in the analysis. The 25th image
in non-target sequences were used to extract non-target EEG data for anal-
ysis. Given our linear model, determination of sensor projections from the
discriminating activity is straightforward, namely

a =
〈x(t)y(t)〉
〈y(t)y(t)〉 , (7)

where the sample average is now taken over the training window. Equation 7
describes the projection a of the discriminating component y that explains
most of the activity x(t). A strong projection indicates low attenuation. There-
fore the intensity of sensor projections a indicates proximity of the component
to the sensors.

Performance of the linear classifiers was characterized by the area under re-
ceiver operator characteristic (ROC) curves referred to as Az (Green and
Swets, 1966). Given the limited number of trials, rather than dividing data in
training and validation sets, a leave-one-out procedure was used (Duda et al.,
2001). A classifier was trained excluding one trial, then this excluded trial was
classified. This procedure was repeated for all trials to determine leave-one-out
performance.

Sliding the training window (by varying τ) from stimulus to response results

2 Plugins for EEGLAB (Delorme and Makeig, 2004) can be downloaded from
http://liinc.bme.columbia.edu/downloads
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in variability of discrimination which is reflected in Az. A significance level for
Az was determined using a bootstrapping method, whereby leave-one-out per-
formance was computed after randomizing the trial labels. This randomization
procedure was repeated 100 times to produce an Az randomization distribu-
tion. The randomization distribution was assumed to have a Gaussian profile,
and the 99th percentile of this distribution corresponds to a significance level
of p = 0.01.

We search for the most discriminating component for each τ by finding the
orientation (θ) of the training window that leads to the largest Az. Figure 3
shows discriminating component activities and scalp projections for one sub-
ject aligned to both the time of the stimulus 3(a) and time of the response 3(b).
As one moves from the top row to the bottom one sees the temporal progres-
sion of the training window (white curves) and the resultant evolution of the
discriminating component activities and corresponding scalp projections.

2.7 Peak detection and response time correlation

The variability introduced by visual processing stages associated with recog-
nition has yet to be rigorously investigated with EEG. Critical to any such
study is single-trial analysis of EEG features. While enhancing signal to noise,
averaging across trials introduces biases. For example, comparison of onset
latencies with peak latencies of ERP components may result in misinterpre-
tations as to the degree of overlap and interaction between processing stages.
Such ERP features obscure inter-trial variability of EEG morphology which
when analyzed on a single-trial basis may support alternative hypotheses. Ini-
tial attempts to avoid such biases involved sub-ensemble averaging over trials
from response time percentiles. Some investigators have derived single-trial
peak and amplitude estimates through visual inspection (Ritter et al., 1979)
and template matching methods (Kutas et al., 1977). Visual inspection of in-
dividual trials from several electrodes is impractical and prone to errors while
adaptive template matching methods such as Woody filters (Woody, 1967)
are susceptible to errors induced by irrelevant external events.

A maximum likelihood reformulation of adaptive template matching filters
demonstrated more accurate estimates (Pham et al., 1987). This approach has
been extended to incorporate estimates of single-trial amplitudes (Jaśkowski
and Verleger, 1999). Most recently, a Bayesian framework for modeling single-
trial multicomponent event related potentials generalizes these filtering ap-
proaches to multiple components. This differentially variable component anal-
ysis (dVCA) model incorporates estimates of optimal latency shift and scaling
factors for each trial and has been used to compare single-trial component la-
tencies with response time for intracortically recorded local field potentials
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(a) Stimulus Locked (b) Response Locked

Fig. 3. Discriminating component activity shows the difference between target and
non-target trials. Stimulus locked (a) and response locked (b) component activity
y (Equation 3) for subject 2. The activity is color coded (positive activity is red,
negative activity is blue). Trials are sorted by response time and aligned vertically
so that stimulus or button release time is at 0 ms for stimulus or response locked
panels respectively (vertical black line). The black “S”-shaped curve indicates the
response or stimulus for stimulus or response locked plots respectively. Each row
shows the activity extracted for a window of δ = 50 ms duration. The beginning and
end of this window is displayed with two white curves. The profile (i.e. orientation
θ) of this window is derived by scaling response times across trials. The degree
of scaling was determined by searching for the scaled training window yielding
maximum discrimination performance. Moving the window by varying τ , enables
discriminating activity for various latencies to be extracted. A representation of
the topology of the extracted activity (Equation 7) is shown to the right (dorsal
view). The color code indicates (red) positive correlation of the sensor readings
with the extracted activity and (blue) negative correlation. These scalp plots can
be thought of as a coupling of the discriminating activity with the sensors, reflecting
the proximity and orientation of the discriminating activity. The Az value shown
as a bar graph indicates the significance of the differential activity. The red dotted
line corresponds to p = 0.01.

from monkeys performing a Go / No-Go visual discrimination task (Truccolo
et al., 2003). However the method does not estimate peak times, rather lag for
maximum correlation between trials, and thus cannot be used to determine
the timing of the component.We estimate inter-trial variability by extract-
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ing features from discriminating components. The stochastic nature of EEG
precludes the robust extraction of component onset from individual trials,
however there is evidence of strong correlation between ERP peak and onset
times (Scheffers et al., 1991). The peaks of spatially integrated discriminating
components were found by fitting a parametric function to the extracted com-
ponent y(t). For simplicity we use a Gaussian profile that is parameterized by
its height β, width σ, delay µ, and baseline offset α:

ŷ(t) = α +
β

σ
√
2π

e−
(t−µ)2

2σ2 . (8)

The optimal parameters for each trial were found using a nonlinear least-
squares Gauss-Newton optimization. The center and width of the discrimina-
tion training window was used to initialize optimization. Figure 4(a) illustrates
the fit to response locked data.

To determine response locking we compute the linear regression coefficients
that predict the latency of the component activity as measured by µ from
the response times given by r as described by Equation 9. The slope from
the response time peak latency regression (θ) is defined to be the degree of
response locking (percentage) for each component. This metric quantifies the
extent to which the component is correlated with the response across trials. It
ranges from 0% for pure stimulus lock to 100% for pure response lock. A slope
θ = 100% indicates that slow responses show a corresponding late activity, and
fast responses show a corresponding early activity. A slope of θ = 0% indicates
that the timing of the activity does not change with response time and is
therefore stimulus locked. Robust linear regression using iteratively reweighted
least-squares (Holland andWelsch, 1977) was used to determine this projection
in order to minimize the effects of outliers 3 (see online Supplemental Material
for animations illustrating these Methods). An example of this regression is
shown in Figure 4(b) for subject 2.

µ̂j = θrj + b (9)

where µ̂j and rj are the predicted peak latencies and response times for the
j–th trial. 100× θ is then the % response lock shown in Figures 5– 8. Robust
regression tries to find the optimum θ such that µ̂j approaches the observed
µj which has been estimated with the curve fit described by Equation 8 .

In defining this response locking metric, regression is more appropriate than
correlation. The goal of regression is to minimize the error of the prediction.

3 For a demonstration of robust regression please refer to the robustdemo function
provided with the Matlab Statistics Toolbox
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This is a sensible thing to do as the latency µ carries most of the measurement
error while the response time can be measured rather reliably. Robust regres-
sion in particular accounts for outliers in the variable that is to be predicted,
in this case µ. Again, a sensible choice as it is µ that may at times be off alto-
gether (when there was no clear peak to be fitted in the single trial response).
One would like to know the trial-to-trial variability within this locking. This
variability is captured by the residual error of the regression (unexplained
variability of the dependent variable). To put this variability into context one
will naturally divide by the variability of the dependent variable, in this case
the variability of r. Incidentally, this ratio is proportional to the standard er-
ror of the slope estimate. This standard error is shown along with the slope
estimates in Figures 6 and 7. These values provide an indication of the relative
trial-to-trial variability – up to

√
N , where N is the number of trials.

Note that there is a one-to-one (monotonic) relationship between the regres-
sion slope and the correlation coefficients. However, in contrast to the regres-
sion slope the correlation coefficient gives equal weight to errors in µ and r,
which we feel is not appropriate for this data. Finally, we are not aware of
a robust definition of the correlation coefficient. The conventional correlation
coefficients would be susceptible to the inevitable outliers in this data.

3 Results

3.1 Task performance

In the RSVP task, participants correctly responded to 91.8% of sequences
containing targets and 98.3% of distractor only sequences. Response times
for correctly identified targets ranged from 342–874 ms, mean response time
of 500 ± 77 ms. While there are reports of significant correlation between
response time and accuracy (Thorpe et al., 1996), our results did not have
sufficient significance to support correlation between mean response time and
fraction of correct responses to target or distractor only sequences.

3.2 Discriminating components

Figure 3 shows projections, y(t), and scalp maps, a, of components signifi-
cantly discriminating between target and distractor trials for one subject (sub-
ject 2). Results are similar across subjects. Visual inspection of the single-trial
components resulting from discrimination of stimulus locked versus response
locked trials provides some intuition as to whether components are correlated
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(a) Single-trial fit
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(b) Robust regression

(c) Peak fit across trials

Fig. 4. Illustration of single-trial fitting procedure and estimation of percent response
locking. (a) Fit ŷ(t) (Equation 8) for component activity yc(t) (Equation 3) for
one trial. Parameters of single-trial fit: µ corresponds to discriminating component
peak latency relative to the response and σ loosely indicates component duration.
(b) Robust regression of component latencies µ and response times r as described
by Equation 9 for Subject 2, response locked τ = −200ms. Predicted µ̂ is shown
by the red line. In response locked analysis, stimulus time (−r) is used in the
regression rather than response time r. For response locked analysis, the degree
of response locking is then defined as 1 − θ rather than θ as in stimulus locked
analysis. Subtracting the slope of the red line (µ̂) from one corresponds to the degree
of response locking shown in Figures 5(b)– 8(b). (c) Displaying the fit from this
regression across trials helps to visualize the degree of response locking. Component
peak latencies µ across trials are shown by colored dots. The color of the peaks
corresponds to the R2 value indicating the goodness–of–fit for ŷ(t). Note that points
with a large R2 tend to lie along the fitted curve. Stimulus onset time (black sigmoid)
is fit to peak latencies to quantify degree of component response locking across trials
(red sigmoid)

with stimulus or response. Based on the bootstrapping results, significantly
discriminating components (p < 0.01) were found beginning 200 ms prior to
the response for all subjects. In most cases, components before 200 ms were not
significant. This indicates that the neuronal processing, measured via EEG,
up to this point is not discriminating for targets vs. distractors.
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The component 200 ms prior to the response corresponds to the activity ob-
served approximately 250 ms after stimulus presentation. The corresponding
topological scalp map indicates that this component is positively correlated
with bilateral far-frontal regions and negatively correlated with parietal re-
gions. Subsequent discriminating components derived by shifting the training
window toward the response time indicate that these components remain posi-
tively correlated with far-frontal regions for approximately 100 ms. This frontal
activity is followed by positive correlation with posterior parietal regions. Be-
tween 200 and 100 ms prior to response, negative correlation of discriminating
activity shifts from occipital to parietal regions.

If our estimator is unbiased then we would expect similar results for stimulus
and response locked conditions. However tests of our method, using simulated
EEG data, demonstrated a small bias largely due to the method for finding
the optimal orientation of the training window (θ) and the fact that the the
training window is incremented in 10 ms steps relative to the stimulus or
response so the data selected for analysis is not identical. We show results for
both to indicate the degree of bias. Clearly the major trends are conserved.

3.3 Correlation between component latency and response time

Response times were projected onto peak latencies of discriminating compo-
nents as shown for one subject in Figure 5. These regression slopes quantify
the degree of response locking of each processing stage. Purely stimulus and
response locked conditions are indicated by 0% and 100% respectively. Note
that as the training window onset advances in time (i.e. as τ increases) the
discriminating component advances and is more response locked. However the
window onset time and component time slightly differ. In our analysis we
always consider response locking as a function of the component timing.

Figure 6 summarizes these response locking result for subject 2, as a function
of component onset time. Together with the scalp projections in Figure 3, these
results indicate that component activity systematically shifts from stimulus
locked to response locked as activity progresses from frontal to parietal regions.
Note that though the overall trend is a transition from stimulus to response
locking, the curves are not monotonic. This is due to noise in the EEG signal
and the resulting errors in estimating single trial peaks latencies. The trends
seen for subject 2 are consistent across seven of our nine subjects, as seen by
the response-locked results in Figure 7. The trend is less evident in subjects 1
and 7.

Figure 8 shows the group results for the discriminating component activity
across nine participants. Scalp projections of discriminating components were
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normalized prior to averaging. Group averaged results are consistent with
scalp topology from Figure 3 showing a shift of activity from frontal to pari-
etal regions over the course of 200 ms. In order to estimate the progression
of response locking across all subjects, it is necessary to account for response
time variability between subjects. Averaging results is not appropriate since
components are not temporally aligned across subjects. Consequently, his-
tograms of response times were equalized to one subject (subject 2), and
component peak times were scaled accordingly. Scaled response times and
component peak times were concatenated across subjects. These registered
group response times were then projected onto the scaled component peak
times to estimate the degree of response locking across subjects. The group
response lock increases from 28% at -200 ms to 78% 50 ms after the response.

4 Discussion

In this study we used linear discrimination of single-trial high density EEG
to identify components correlated with visual object recognition and then
analyze these components in terms of their onset relative to response time.
Rather than integrate across trials, logistic regression was used to find an op-
timal set of weighting coefficients to integrate across sensors. Scalp projections
derived from these coefficients describe the proximity of discriminating com-
ponents to the sensors. Discrimination performance of the classifier defined
in terms of ROC analysis was used to gauge the significance of components
using a bootstrap method. Area under ROC curves indicates that significantly
discriminating activity is observed within 250 ms following stimulus presen-
tation. Discriminating activity was initially observed over frontal regions and
progressed to parietal regions around the response time.

The RSVP task requires high vigilance and emulates natural saccadic scene
acquisition. The structure of our task, with varied scale, pose and position of
target objects (people) requires subjects to perform object recognition rather
than simply recognizing low level features. The RSVP paradigm has been used
to study the response of neurons in higher visual areas such as superior tem-
poral sulcus through invasive recordings (Keysers et al., 2001). A rapid visual
presentation task was subsequently used in an event related potential study
and revealed discriminating activity in frontal electrodes about 150 ms fol-
lowing stimulus onset (Thorpe et al., 1996). A more recent EEG RSVP study
revealed this early component is likely associated with discrimination of low
level features while a later response locked component arising about 300 ms
following stimulus presentation is most likely associated with object recogni-
tion (Johnson and Olshausen, 2003). This study analyzed the significance of
differences between task conditions for each electrode to derive estimates of
processing time.
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Fig. 5. Detailed temporal analysis of stimulus locked (a) and response locked (b)
discriminating activity for subject 2. Each row in the left column shows the fit
of discriminating activity from Figure 3 to a Gaussian profile described by Equa-
tion 8. On the top of each of these panels is the onset time of the window used
for discrimination. Right columns of each panel display the peak latency (µ) (black
dots) of each trial. The projection of response times onto these peak latencies is
shown with a red curve (stimulus times were projected onto peak latencies for the
response locked condition). The parameters for this projection indicate the degree
of response locking for each component. Purely stimulus and response locked con-
ditions are indicated by 0% and 100% response lock respectively. On top of these
panels are reported the percent response lock and corresponding error in the fit of
the peak latencies across trials as well as the mean onset time of the component.
The standard deviation of peak latencies is 62 ms for stimulus locked and 66 ms for
response locked results shown.

The methods we present permit the study of processing stages without ma-
nipulating stimulus characteristics or stimulus-response compatibility as de-
scribed by the additive factors method. Traditionally, investigators of “mental
chronometry” have relied on experimental manipulations of response time to
characterize mental processing stages (Rugg and Coles, 1995; Meyer et al.,
1988). For instance, Donder’s subtraction method varies the complexity of
experimental tasks (Donders, 1868/1969). Comparison of response time dis-
tributions resulting from the canonical simple, forced-choice and go / no-go
response time tasks yields estimates of the duration of mental processes asso-
ciated with stimulus perception, discrimination, response selection, and motor
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Fig. 6. Degree of response locking over time derived from stimulus (a) and response
locked (b) discriminating components for subject 2. Response lock %’s are from
projections shown in Figure 5. Error bars reflect standard error of the regression
parameter associated with response locking %.
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Fig. 7. Degree of response locking for our nine subjects, with data response locked.
Seven of the nine subjects show a systematic increase in response locking as the
component onset time nears the response time. Subject 1, and to a lesser sense
subject 7, does not show this trend.

response. The validity of the subtraction approach rests on the assumptions
that the durations of mental processes combine additively and are not influ-
enced by experimental changes. Sternberg’s additive factors method (AFM)
circumvents these assumptions by modulating stimulus characteristics such as
luminance, coherence, and frequency content (Sternberg, 1969). The effects of
stimulus factor manipulation are assumed to be limited to temporal variations
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Fig. 8. Group results over all 9 subjects for stimulus locked (a) and response locked
(b) discriminating components. Top row shows scalp distribution of discriminating
activity averaged over all subjects. Bottom row shows the degree of response locking
over time. Error bars reflect standard error of the regression parameter associated
with response locking %. For all subjects the first discriminating activity is frontal
and correlated more with the stimulus than response. By the time it arrives in
parietal areas a delay has been introduced.
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in a stimulus encoding stage. Independent of stimulus encoding processes, a
response stage is influenced by changes in stimulus-response compatibility in-
duced, for instance, by adding stimulus classes. The AFM is only valid assum-
ing that processing stages are arranged serially without temporal overlap and
information transmission between stages is discrete. This is not necessarily the
case as indicated by McClelland’s cascade model which proposes that informa-
tion flows continuously through several parallel processes (McClelland, 1979).
The varied-priming and speed-accuracy decomposition methods described by
Meyer (Meyer et al., 1988) were developed to address the parallel-serial and
discrete-continuous questions. These methods rely on manipulating the timing
and number of stimuli presented during an experiment which may invalidate
assumptions governing the model and methods used to analyze results (van der
Molen et al., 1991).

While our methods do not rely on experimental manipulations as in AFM
to characterize processing stages, the validity of our methods rests on several
experimental factors. It is critical that differences within each stimulus class
are minimized in order for features observed in EEG trials evoked by a partic-
ular stimulus class to describe the same phenomena. In addition, the cognitive
state (i.e. attentional resources) of participants must be consistent during pre-
sentation of stimuli from each class. We made an effort to mitigate the impact
of these requirements by screening stimuli and using a high vigilance task.

Specific to our findings, current models for frontal-parietal lobe interactions
induced by target stimuli during an oddball paradigm indicate that anterior
cingulate, inferior-temporal lobe, and hippocampus are primarily responsible
for P3a and P3b potentials observed on the scalp (Polich, 2003). According
to this model, frontal lobe activation associated with P3a reflects allocation
of attentional resources. Stimulus induced updating of working memory re-
sults in activation of anterior cingulate and communication of representational
changes to infero-temporal cortex. Parietal P3b scalp potentials reflect mem-
ory operations induced in hippocampus by frontal attention related activity.
Such memory updates are subsequently transmitted by hippocampus to pari-
etal cortex. Our current results differ in that the far-frontal activity we report
here is more frontal than the conventional anterior P300 (P3a). It also lacks a
central component that typically results from anterior cingulate (Makeig et al.,
2004). While the scalp projections of our discriminating components do not
match P3a and P3b, the timing and frontal-parietal progression of discrim-
inating activity suggests that cortical activity underlying these components
may be related. Preliminary fMRI results (not shown) indicate components in
frontal and parietal Brodmann’s areas 6, 7, 8 and 40. These areas correspond
to pre-motor cortex involved with motor planning, parietal cortex associated
with visuo-motor integration, frontal eye fields involved with attention, deci-
sion making and controlling eye movement, and lateral inferior parietal cortex
associated with decision making. These results were not recorded simultane-
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ously with EEG therefore it is difficult to determine correspondence with pre-
sented results. We are currently conducting simultaneous EEG/fMRI studies
to gather additional evidence for spatially localizing these components.

Interestingly, work by Makeig and colleagues (Makeig et al., 1999, 2004) using
ICA to identify subcomponents of the P3 complex, identifies two components
that have nearly identical scalp projections to our far-frontal and parietal
components. Makeig labels these P3f (far-frontal) and P3b (parietal). Timing
of these components is shown to indicate that P3f precedes the P3b compo-
nent. Our results indicate that these components found using ICA are in fact
also the most discriminating components for the task at their corresponding
onset times. In addition our results indicate that the P3 complex in fact is
responsible for introducing the major fraction (at least 60%) of response time
variability seen in our visual oddball task. This seems to be further evidence
that the P3 complex is composed of distinct components which dynamically
interact to form the much studied P3 (P3a and P3b) seen in trial-averaged
ERPs.

Since the features of discriminating components are believed to reflect visual
processing, attention and decision stages, modeling the peak latency, ampli-
tude and duration of each trial enables the study of covariability of each stage
with response time. Consistent with (Kammer et al., 1999), Figure 8 indi-
cates that significant processing delays may be introduced by early processing
stages. Within 200 ms prior to response (≈ 250 ms following stimulus), ac-
tivity is already, on average, between 25-35% response locked. Due to our
method, it is not possible to determine whether this response locking is a
result of components at this onset time or earlier onset times, since discrim-
inating components were not significant for earlier onset (peak) times. Thus
we conclude it is possible that some of this early response locking may be due
to early visual processes (0-250 ms poststimulus). For our nine subjects, cor-
relation analysis reveals that discriminating component activity progressively
becomes more response locked with subsequent processing stages. Along with
scalp projections derived from discriminant analysis, the covariability of peak
latency with response time describes which cortical regions introduce process-
ing delays. If we assume early visual processing to be mostly occipital, then
we can roughly estimate the delay introduced by different processing stages
for this task (see Table 1). We conclude that the time course of discriminat-
ing component activity provides insight into the nature of information flow
through the brain during visual discrimination.
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each area.
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